

MATTHEW COLLESS

10 NOVEMBER 2018

H₀ SYMPOSIUM, BERLIN

COSMIC MICROWAVE BACKGROUND

LARGE-SCALE
STRUCTURE IN

GALAXY MAPS

Observations in blue (2dFGRS & SDSS)

Simulations in red (Millennium Run)

CMB + GALAXY POWER SPECTRUM

CMB + GALAXY POWER SPECTRUM

PHYSICS FROM LARGE-SCALE STRUCTURE

LSS encodes lots of information

Information from geometry

- Galaxy clustering as a standard ruler
- BAO or full power spectrum
- Alcock-Paczynski effect

Information from power spectrum shape

- Matter density
- Baryon Acoustic Oscillations
- Neutrino mass
- Inflation fluctuation spectrum

Information from large scale bias

• f_{NL}

$$P_{gg}^{s}(k,\mu,z) = k^{n}T^{2}(k)G^{2}(z)\left[\dot{b}(z,k) + f(z)\mu^{2}\right]^{2}$$

k = comoving wavenumber

 $\mu = \cos(\text{angle to line-of-sight})$

a = cosmological scale factor

b = galaxy bias factor

G = linear growth rate

f = dlnG/dlna

Information from structure growth

- · amplitude of power spectrum
- Redshift-Space Distortions

REDSHIFT SURVEYS Lookback Time (Gyrs)

Movie by Simon Driver

US surveys, European surveys, Australian surveys (celestial sphere is at CMB)

AUSTRALIAN REDSHIFT SURVEYS

2dFGRS, 2QZ, 2SLAQ-LRG, 2SLAQ-QSO, 6dFGS, GAMA, WiggleZ (celestial sphere at z=1)

COSMOLOGY FROM BAO

- Baryon acoustic oscillations (BAO)
 are a cosmological standard ruler
 derived from large-scale structure
- BAO result from pressure waves in the pre-recombination photon-baryon fluid imprinting the sound horizon scale on the matter distribution
- BAO can map cosmic expansion both along and across the line of sight, and can probe both dark energy & gravity
- Galaxy z-surveys can measure BAO as a function of redshift, and so give the evolution of the angular diameter distance $D_A(z)$ and expansion rate H(z)
- BAO are a precise and (supposedly)
 well-understood tool, but require very
 large-scale surveys, in both #s & size

DEVELOPMENT OF BAO SURVEYS

- 2dFGRS & SDSS BAO were first detected in the galaxy distribution (at 2.5σ) by 2dFGRS and SDSS (Cole+ 2005, Eisenstein+ 2005)
- □ SDSS-LRG − Kazin+ (2010) used the full LRG sample from SDSS DR7 to obtain a 3.5% measurement of the BAO scale at z = 0.35
- 2dFGRS+SDSS Percival+ (2010) used 900,000 galaxies from the 2dFGRS and SDSS DR7/LRG samples to obtain the BAO scale at z=0.27 with 2.7% precision
- □ 6dFGS obtained a fiducial low-redshift (z~0.1) BAO distance measurement with 4.5% precision (Beutler+ 2011, Carter+ 2018)
- □ WiggleZ survey observed 2x10⁵ emission-line galaxies and measured BAO at 0.5<z<1 with 3.8% precision (Blake+ 2011)
- BAO reconstruction Padmanabhan+ (2012) showed that BAO measurements can be improved by about a factor of 2 through reconstruction of the density field

LSS Surveys - the State of the Art

- BOSS survey (part of SDSS-III) detects BAO feature at 7σ in galaxies and 5σ in Lyα forest
- BAO alone yield a high-confidence detection of dark energy and, with the CMB acoustic scale, BAO imply a nearly flat universe
- □ BAO+CMB+SNe data jointly give an estimate $H_0 = 67.3 \pm 1.1 \text{ km/s/Mpc} (1.7\%)$, robust to assumptions about dark energy & curvature
- □ For constant dark energy (Λ), combining BAO+CMB+SNe yields

$$\Omega_{\rm m} = 0.301 \pm 0.008 \ (2.7\%)$$

 $\Omega_{\rm k} = -0.003 \pm 0.003$

- □ For evolving forms dark energy, combined BAO+CMB+SNe data are always consistent with flat ΛCDM at about the 1σ level
- □ BAO+CMB+WL give a summed mass for neutrino species of $\Sigma m_v < 0.25$ eV
- □ eBOSS (part of SDSS-IV) is mapping 0.5x10⁶
 QSOs to map the BAO feature over 0.8<z<2.

H₀ FROM THE 6DF GALAXY SURVEY (6DFGS)

- □ At low z, distance measures only constrain
 H₀ but such local H₀ estimates are nearly independent of the cosmological model
- ☐ 6dFGS BAO gives low H₀ consistent with CMB, unlike local distance ladder estimates

Beutler+ 2011 (6dFGS, BAO) $H_0 = 67 \pm 3.2 \text{ km/s/Mpc}$

Riess+ 2018 (Cepheids, SNe) $H_0 = 73.5 \pm 1.6 \text{ km/s/Mpc}$

Planck 2018 (CMB, BAO) $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$ (model-dependent) 3.6σ tension

LOCAL & CMB H₀ ARE DISCREPANT

BAO SCALE DISCREPANCY

The H_0 discrepancy is equivalent to (can be interpreted as) a discrepancy in the BAO scale (the sound horizon scale at the drag epoch, r_s)

Taipan

Galaxy Motions

Galaxy Evolution

Cosmic Expansion

Tests of Gravity

THE TAIPAN SURVEY

- □ Taipan is a spectroscopic galaxy survey covering 2π steradians (Dec < +10°, b>|10°|) using 1.2-metre UK Schmidt Telescope
- □ Redshifts for 2×10^6 galaxies: a complete sample of 1.2×10^6 galaxies to i = 17 & a sample of 0.8×10^6 luminous red galaxies
- □ Effective redshift $\langle z_{eff} \rangle \approx 0.17$; effective volume $V_{eff} \approx 1.3 \text{ Gpc}^3$
- □ Observing program will take 4.5 years, starting March 2019
- ☐ A key science goal for Taipan is measuring H₀ to 1% precision
- Survey description: da Cunha et al., 2017, PASA, 34, 47
 https://doi.org/10.1017/pasa.2017.41
- □ More details about the Taipan survey available on website <u>https://www.taipan-survey.org/</u>

REDSHIFT SURVEYS

TAIPAN SURVEY COMPONENTS & PHASES

- ☐ The Taipan galaxy survey has three components:
 - BAO survey large-volume z-survey optimized for cosmology
 - Peculiar velocity survey Fundamental Plane survey optimized for nearby early-type galaxies & measuring peculiar velocities
 - Legacy survey an *i*-band magnitude-limited sample with high completeness optimized for galaxy studies & legacy value
- ☐ The survey will be carried out in two phases:
 - Taipan Phase 1 [first ~15 months] will be based on 2MASS (BAO survey), 6dFGS (PV survey) & KiDS-S (i-band survey); these are the best available sources at the start of the survey
 - Taipan Final [next ~3 years] will be based on SkyMapper and PanSTARRS (all surveys); best input sources by end of Phase 1

TAIPAN BAO DISTANCES

HUBBLE CONSTANT FROM TAIPAN

- With $2x10^6$ galaxies at $\langle z_{\rm eff} \rangle \approx 0.17$ over $V_{\rm eff} \approx 1.3$ Gpc³, simulations show that Taipan Final will measure H_0 to 0.9% precision, with 2.1% precision already by the end of Taipan Phase 1 (da Cunha+ 2017)
- Taipan Final gives H₀ with 5x the precision of 6dFGS:
 - Gain ~2.5x from larger sample size and volume of Taipan cf. 6dFGS
 - Gain another ~2x
 from better BAO
 reconstruction

H₀ Tensions

- Taipan will test the tension in H₀
 measurements between high-redshift
 CMB (=BAO) and low-redshift distance
 ladder estimates by providing a 1%
 BAO measurement at low redshift
 - 2018 status: high-z Planck CMB and low-z SNe distance ladder estimates are in >3σ tension
 - 2022 case A: Taipan supports the *Planck CMB* estimate with a BAO-derived low-z 1% H₀ measurement...
 - 2022 case B: Taipan supports the distance ladder estimate with a BAO-derived low-z 1% H₀ measurement...
- Less interesting intermediate cases are of course also possible!

2018 status	BAO measure	Distance ladder
High redshift (z~1100)	Planck (2018) CMB 67.4 +/- 0.5	N/A
Low redshift (z<0.1)	6dFGS (2011) BAO 67.0 +/- 3.2	Riess+(2018) SNe 73.5 +/- 1.6
3.6σ tension between BAO (CMB) and distance ladder (SNe) results		

2022 Case A	BAO measure	Distance ladder
High redshift (z~1100)	Planck (2018) CMB 67.4 +/- 0.5	N/A
Low redshift (z<0.1)	Taipan (2022) BAO 67.4 +/- 0.6	Riess+(2022) SNe 73.5 +/- 0.7

2022 Case A

7.1 σ discrepancy between the low-z results of two methods \Rightarrow problem with distance ladder or BAO scale?

2022 Case B	BAO measure	Distance ladder
High redshift (z~1100)	Planck (2018) CMB 67.4 +/- 0.5	N/A
Low redshift (z<0.1)	Taipan (2022) BAO 73.5 +/- 0.7	Riess+(2022) SNe 73.5 +/- 0.7

2022 Case B

DARK ENERGY SURVEY INSTRUMENT (DESI)

- DESI is a Stage IV dark energy experiment to study BAO with a wide-area galaxy & QSO z-survey
- □ Four target samples observed:
 - Luminous red galaxies up to z=1.0
 - [OII] emission-line galaxies to z=1.7
 - QSOs at 2.1<z<3.5 and their Ly-α forest neutral hydrogen absorption
 - A magnitude-limited Bright Galaxy Survey of ~10⁷ galaxies with z≈0.2
 - In total, 3x10⁷ galaxy and QSO z's

Conclusions – H₀ from LSS Surveys

- \Box Is there just tension or a real discrepancy in H₀ measurements?
 - Taipan and the DESI Bright Galaxy Survey will measure H_0 from BAO at low redshift to <1% precision, each giving >7 σ significance (>10 σ jointly) if the current size of the discrepancy is maintained
 - DESI (and the EUCLID and WFIRST satellite missions) will also give <1% precision measurements of H(z) for most redshifts z<3
- ☐ If real, what is the origin of the discrepancy?
 - o Late-time (z<3, esp. DE-dominated era) deviations from Λ CDM will be tracked directly (hard to reconcile with other cosmological constraints)
 - o If all H(z) from H₀ to H(z=3) are low in proportion, issue may be with BAO scale (r_s) , implying problems in z>1100 physics or early-time cosmology
- Planned large-scale structure surveys can address, refine and potentially resolve this controversy!