H_0 from CMB and Planck ## **Antony Lewis** http://cosmologist.info/ ## Observed CMB power spectrum **Observations** $(10^{-5} perturbations)$ Constrain theory of early universe + evolution parameters and geometry Linear perturbation theory very accurate: given a model, can calculate to high precision #### E-mode polarization 2018: polarization now included in main results. Improved understanding and correction of systematics (e.g. TE leakage), but some unresolved issues (e.g. with polar efficiencies) remain ### Cross-correlation with temperature #### CMB lensing reconstruction $8 \le L \le 400$: "Conservative" lensing likelihood #### Perturbation evolution Perturbations: End of inflation gravity+ pressure+ diffusion Perturbations: Last scattering surface CMB ($z \sim 1060$) z = 0 CMB ($z \sim 1060$) ## Λ CDM baryon density at fixed θ_* , $\Omega_m h^2$ (baryons deepen overdensity compressions: enhance odd peaks of spectrum) Odd/even height ratio distinctive and quite robust: $$\Omega_b h^2 = 0.0224 \pm 0.0002$$ (and agrees with BBN prediction based on element abundance observations, Cooke et al.) ## Λ CDM matter density at fixed θ_* , $\Omega_b h^2$ (more matter lowers amplitude for modes that enter horizon in matter domination) Can be partly compensated by changing initial power A_s , n_s and foregrounds. But detailed shape is still quite distinctive and robust: $$\Omega_m h^2 = 0.143 \pm 0.001$$ Hot big bang ⇒ comoving sound horizon: $$r_{\rm S} \approx \int_0^{t_*} \frac{c_{\rm S} dt}{a} \sim (144.4 \pm 0.3) \,{\rm Mpc}$$ $heta_*$ recombination Hot big bang today $r_{\rm S}$, $\theta_* \Rightarrow$ Comoving radial distance $\chi_* \sim (13.87 \pm 0.03)~{\rm Gpc}$ $$\chi_* = \int \left(\frac{cdt}{a}\right)$$ $$= \int \left(\frac{da}{a^2 H}\right) \approx \int \frac{da}{\sqrt{a\Omega_{\rm m} H_0^2 + a^4 \Omega_{\Lambda} H_0^2}}$$ $$\Omega_{\Lambda}H_0^2 = H_0^2 - \Omega_m H_0^2$$ and know $\Omega_m h^2 \Rightarrow H_0$ $heta_*$ r_s ## $\Omega_m - H_0$ degeneracy - θ_* constrained more tightly than anything else - In Λ CDM $\theta_* \sim \text{constant} \Rightarrow \Omega_m h^3 \sim \text{const}$ at Planck parameters - $\Rightarrow \Omega_m$ and H_0 (and $\Omega_m h^2$ and H_0) tightly anti-correlated ## Planck 2018 ΛCDM TT,TE,EE+lowE+lensing parameters | Parameter | Plik best fit | Plik[1] | CamSpec [2] | $([2] - [1])/\sigma_1$ | Combined | |---|---------------|-----------------------|------------------------------|------------------------|-----------------------| | $\Omega_{\rm b}h^2$ | 0.022383 | 0.02237 ± 0.00015 | 0.02229 ± 0.00015 | -0.5 | 0.02233 ± 0.00015 | | $\Omega_{ m c}h^2$ | 0.12011 | 0.1200 ± 0.0012 | 0.1197 ± 0.0012 | -0.3 | 0.1198 ± 0.0012 | | $100\theta_{\mathrm{MC}}$ | 1.040909 | 1.04092 ± 0.00031 | 1.04087 ± 0.00031 | -0.2 | 1.04089 ± 0.00031 | | au | 0.0543 | 0.0544 ± 0.0073 | $0.0536^{+0.0069}_{-0.0077}$ | -0.1 | 0.0540 ± 0.0074 | | $ln(10^{10}A_s)$ | 3.0448 | 3.044 ± 0.014 | 3.041 ± 0.015 | -0.3 | 3.043 ± 0.014 | | $n_{\rm s}$ | 0.96605 | 0.9649 ± 0.0042 | 0.9656 ± 0.0042 | +0.2 | 0.9652 ± 0.0042 | | $\overline{\Omega_{ m m} h^2 \ \ldots \ }$ | 0.14314 | 0.1430 ± 0.0011 | 0.1426 ± 0.0011 | -0.3 | 0.1428 ± 0.0011 | | $H_0^{}$ [km s ⁻¹ Mpc ⁻¹] | 67.32 | 67.36 ± 0.54 | 67.39 ± 0.54 | +0.1 | 67.37 ± 0.54 | | $\Omega_{ m m}$ | 0.3158 | 0.3153 ± 0.0073 | 0.3142 ± 0.0074 | -0.2 | 0.3147 ± 0.0074 | | Age [Gyr] | 13.7971 | 13.797 ± 0.023 | 13.805 ± 0.023 | +0.4 | 13.801 ± 0.024 | | $\sigma_8 \dots \dots$ | 0.8120 | 0.8111 ± 0.0060 | 0.8091 ± 0.0060 | -0.3 | 0.8101 ± 0.0061 | | $S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$ | 0.8331 | 0.832 ± 0.013 | 0.828 ± 0.013 | -0.3 | 0.830 ± 0.013 | | Zre | 7.68 | 7.67 ± 0.73 | 7.61 ± 0.75 | -0.1 | 7.64 ± 0.74 | | $100\theta_*$ | 1.041085 | 1.04110 ± 0.00031 | 1.04106 ± 0.00031 | -0.1 | 1.04108 ± 0.00031 | | $r_{\rm drag}$ [Mpc] | 147.049 | 147.09 ± 0.26 | 147.26 ± 0.28 | +0.6 | 147.18 ± 0.29 | Baseline likelihood Alternative likelihood LCDM results robust to $\sim 0.5\sigma$ (where σ is small) #### **Model fits** LCDM best-fits: $$H_0 = 67.3$$ ($n_s = 0.966$, $\Omega_m = 0.32$, $\Omega_m h^2 = 0.143$) vs. best fit for $H_0 = 73.0$ ($n_s = 0.995$, $\Omega_m = 0.25$, $\Omega_m h^2 = 0.132$) ### ΛCDM polarization/temperature consistency ## CMB and BAO consistency in ΛCDM z = 0 BAO ($z \sim 0.5$) CMB ($z \sim 1060$) ### Assuming Λ CDM + Planck sound horizon r_d (transverse and other BAO also very consistent) ## Planck CMB lensing \(\Lambda CDM \) parameters $$H_0 = 67.9^{+1.2}_{-1.3} \text{ km s}^{-1} \text{Mpc}^{-1},$$ $$\sigma_8 = 0.811 \pm 0.019,$$ $$\Omega_m = 0.303^{+0.016}_{-0.018},$$ $$68 \%, \text{lensing+BAO}$$ Also adding robust CMB θ_* constraint: $H_0 = 68.0 \pm 0.7$ (68 %, lensing+BAO+ θ_*) ("Lensing-only" priors: $\Omega_{\rm b}{\rm h}^2=0.0222\pm0.0005$, $n_{\rm s}=0.96\pm0.02$, 0.4< h<1) #### ΛCDM inverse distance ladder comparison Note BAO inverse distance ladder and CMB θ_* degeneracies different - cannot have big fluctuation along one degeneracy direction WMAP, Planck and inverse distance ladder Λ CDM constraints agree well (also ACTpol, SPTpol, BUT SPTpol find $H_0 = 71 \pm 2$ at l > 1000) (c.f. Aubourg, Addison, Cuesta, Heavens, DES collaboration, etc et al.) # H_0 constraint model dependent ...but in practice constraint fairly robust to many model extensions **Table 5.** Constraints on standard cosmological parameters from *Planck* TT,TE,EE+lowE+lensing when the base- Λ CDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the Λ CDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_P independently (which requires non-standard BBN). Varying A_L is not a physical model (see Sect. 6.2). | Parameter(s) | $\Omega_{ m b} h^2$ | $\Omega_{ m c} h^2$ | $100\theta_{ m MC}$ | H_0 | n_{s} | $\ln(10^{10}A_{\rm s})$ | |--|---------------------------------|------------------------------|---------------------------------|-------------------------|------------------------------|---------------------------| | Base ΛCDM | 0.02237 ± 0.00015 | 0.1200 ± 0.0012 | 1.04092 ± 0.00031 | 67.36 ± 0.54 | 0.9649 ± 0.0042 | 3.044 ± 0.014 | | r | 0.02237 ± 0.00014 | 0.1199 ± 0.0012 | 1.04092 ± 0.00031 | 67.40 ± 0.54 | 0.9659 ± 0.0041 | 3.044 ± 0.014 | | $dn_s/d \ln k \dots \dots$ | 0.02240 ± 0.00015 | 0.1200 ± 0.0012 | 1.04092 ± 0.00031 | 67.36 ± 0.53 | 0.9641 ± 0.0044 | 3.047 ± 0.015 | | $dn_s/d \ln k, r \dots \dots$ | 0.02243 ± 0.00015 | 0.1199 ± 0.0012 | 1.04093 ± 0.00030 | 67.44 ± 0.54 | 0.9647 ± 0.0044 | 3.049 ± 0.015 | | $d^2 n_s / d \ln k^2$, $d n_s / d \ln k$. | 0.02237 ± 0.00016 | 0.1202 ± 0.0012 | 1.04090 ± 0.00030 | 67.28 ± 0.56 | 0.9625 ± 0.0048 | 3.049 ± 0.015 | | $N_{ m eff}$ | 0.02224 ± 0.00022 | 0.1179 ± 0.0028 | 1.04116 ± 0.00043 | 66.3 ± 1.4 | 0.9589 ± 0.0084 | 3.036 ± 0.017 | | $N_{\rm eff}$, $dn_{\rm s}/d\ln k$ | 0.02216 ± 0.00022 | 0.1157 ± 0.0032 | 1.04144 ± 0.00048 | 65.2 ± 1.6 | 0.950 ± 0.011 | 3.034 ± 0.017 | | Σm_{ν} | 0.02236 ± 0.00015 | 0.1201 ± 0.0013 | 1.04088 ± 0.00032 | $67.1^{+1.2}_{-0.67}$ | 0.9647 ± 0.0043 | 3.046 ± 0.015 | | $\Sigma m_{\nu}, N_{\text{eff}} \ldots \ldots$ | 0.02223 ± 0.00023 | 0.1180 ± 0.0029 | 1.04113 ± 0.00044 | 66.0+1.8 | 0.9587 ± 0.0086 | 3.038 ± 0.017 | | $m_{\nu,\mathrm{sterile}}^{\mathrm{eff}},N_{\mathrm{eff}}$ | $0.02242^{+0.00014}_{-0.00016}$ | $0.1200^{+0.0032}_{-0.0020}$ | $1.04074^{+0.00033}_{-0.00029}$ | $67.11^{+0.63}_{-0.79}$ | $0.9652^{+0.0045}_{-0.0056}$ | $3.050^{+0.014}_{-0.016}$ | | α_{-1} | 0.02238 ± 0.00015 | 0.1201 ± 0.0015 | 1.04087 ± 0.00043 | 67.30 ± 0.67 | 0.9645 ± 0.0061 | 3.045 ± 0.014 | | $w_0 \dots \dots$ | 0.02243 ± 0.00015 | 0.1193 ± 0.0012 | 1.04099 ± 0.00031 | | 0.9666 ± 0.0041 | 3.038 ± 0.014 | | Ω_K | 0.02249 ± 0.00016 | 0.1185 ± 0.0015 | 1.04107 ± 0.00032 | $63.6^{+2.1}_{-2.3}$ | 0.9688 ± 0.0047 | $3.030^{+0.017}_{-0.015}$ | | $Y_{ m P}$ | 0.02230 ± 0.00020 | 0.1201 ± 0.0012 | 1.04067 ± 0.00055 | 67.19 ± 0.63 | 0.9621 ± 0.0070 | 3.042 ± 0.013 | | $Y_{ m P}, N_{ m eff}$ | 0.02224 ± 0.00022 | $0.1171^{+0.0042}_{-0.0049}$ | 1.0415 ± 0.0012 | $66.0^{+1.7}_{-1.9}$ | 0.9589 ± 0.0085 | 3.036 ± 0.018 | | $A_{L}\dots\dots$ | 0.02251 ± 0.00017 | 0.1182 ± 0.0015 | 1.04110 ± 0.00032 | 68.16 ± 0.70 | 0.9696 ± 0.0048 | $3.029^{+0.018}_{-0.016}$ | #### Note: No useful constraint in varying dark energy models, but consistently constrained adding SN/BAO Higher neutrino mass or dark energy with w > -1 only *lower* H_0 . Ω_K also pulls towards low H_0 . #### Extra relativistic degrees of freedom ($N_{\rm eff} \neq 3.046$) No preference from *Planck* alone, though errors somewhat increased. Λ CDM+ $N_{\rm eff}$ Planck+BAO: $H_0 = (67.3 \pm 1.1) \, {\rm km \ s^{-1} Mpc^{-1}}$ (still 3σ from Riess et al.) ## **Conclusions** Planck 2018 gives high-precision measurements of TT, TE, EE spectra and lensing Systematic errors/modelling parameter uncertainties thought to be <1 σ . And σ is very small! Angular acoustic scale θ_* measured to 0.03%. Details of acoustic peak amplitudes constrain physical densities to percent precision. CMB does not measure H_0 directly, but provides tight indirect constraints if a model is assumed. Planck TT, TE, EE and lensing data consistent with Λ CDM and $H_0 \sim (67.4 \pm 0.5)$ km/s/Mpc. Other CMB experiments and inverse distance ladder give consistent results. No simple late-time model extensions substantially change H_0 without conflicting with lensing, SN and/or BAO. Any change to early-universe physics to change r_s (and $r_{\rm drag}$) and hence inferred H_0 must reproduce observed spectrum shape quite accurately (changing $N_{\rm eff}$ does not) - Simons Observatory, S4 could detect small differences due to new physics not resolved by Planck/SPT/ACT There are some other oddities in the Planck data fits - could hint at new physics (peaks slightly too smooth, dip at low ℓ) - are there any models which simultaneously change $r_{\rm drag}$, keep broad fit, but resolve oddities ?? The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada. Parior - a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.