H_0 from CMB and Planck

Antony Lewis

http://cosmologist.info/

Observed CMB power spectrum

Observations

 $(10^{-5} perturbations)$

Constrain theory of early universe + evolution parameters and geometry

Linear perturbation theory very accurate: given a model, can calculate to high precision

E-mode polarization

2018: polarization now included in main results.

Improved understanding and correction of systematics (e.g. TE leakage), but some unresolved issues (e.g. with polar efficiencies) remain

Cross-correlation with temperature

CMB lensing reconstruction

 $8 \le L \le 400$: "Conservative" lensing likelihood

Perturbation evolution

Perturbations: End of inflation

gravity+ pressure+ diffusion

Perturbations: Last scattering surface

CMB ($z \sim 1060$)

z = 0

CMB ($z \sim 1060$)

Λ CDM baryon density at fixed θ_* , $\Omega_m h^2$

(baryons deepen overdensity compressions: enhance odd peaks of spectrum)

Odd/even height ratio distinctive and quite robust:

$$\Omega_b h^2 = 0.0224 \pm 0.0002$$

(and agrees with BBN prediction based on element abundance observations, Cooke et al.)

Λ CDM matter density at fixed θ_* , $\Omega_b h^2$

(more matter lowers amplitude for modes that enter horizon in matter domination)

Can be partly compensated by changing initial power A_s , n_s and foregrounds. But detailed shape is still quite distinctive and robust:

$$\Omega_m h^2 = 0.143 \pm 0.001$$

Hot big bang

⇒ comoving sound horizon:

$$r_{\rm S} \approx \int_0^{t_*} \frac{c_{\rm S} dt}{a} \sim (144.4 \pm 0.3) \,{\rm Mpc}$$

 $heta_*$

recombination

Hot big bang

today

 $r_{\rm S}$, $\theta_* \Rightarrow$ Comoving radial distance $\chi_* \sim (13.87 \pm 0.03)~{\rm Gpc}$

$$\chi_* = \int \left(\frac{cdt}{a}\right)$$

$$= \int \left(\frac{da}{a^2 H}\right) \approx \int \frac{da}{\sqrt{a\Omega_{\rm m} H_0^2 + a^4 \Omega_{\Lambda} H_0^2}}$$

$$\Omega_{\Lambda}H_0^2 = H_0^2 - \Omega_m H_0^2$$
 and know $\Omega_m h^2 \Rightarrow H_0$

 $heta_*$

 r_s

$\Omega_m - H_0$ degeneracy

- θ_* constrained more tightly than anything else
- In Λ CDM $\theta_* \sim \text{constant} \Rightarrow \Omega_m h^3 \sim \text{const}$ at Planck parameters
- $\Rightarrow \Omega_m$ and H_0 (and $\Omega_m h^2$ and H_0) tightly anti-correlated

Planck 2018 ΛCDM TT,TE,EE+lowE+lensing parameters

Parameter	Plik best fit	Plik[1]	CamSpec [2]	$([2] - [1])/\sigma_1$	Combined
$\Omega_{\rm b}h^2$	0.022383	0.02237 ± 0.00015	0.02229 ± 0.00015	-0.5	0.02233 ± 0.00015
$\Omega_{ m c}h^2$	0.12011	0.1200 ± 0.0012	0.1197 ± 0.0012	-0.3	0.1198 ± 0.0012
$100\theta_{\mathrm{MC}}$	1.040909	1.04092 ± 0.00031	1.04087 ± 0.00031	-0.2	1.04089 ± 0.00031
au	0.0543	0.0544 ± 0.0073	$0.0536^{+0.0069}_{-0.0077}$	-0.1	0.0540 ± 0.0074
$ln(10^{10}A_s)$	3.0448	3.044 ± 0.014	3.041 ± 0.015	-0.3	3.043 ± 0.014
$n_{\rm s}$	0.96605	0.9649 ± 0.0042	0.9656 ± 0.0042	+0.2	0.9652 ± 0.0042
$\overline{\Omega_{ m m} h^2 \ \ldots \ }$	0.14314	0.1430 ± 0.0011	0.1426 ± 0.0011	-0.3	0.1428 ± 0.0011
$H_0^{}$ [km s ⁻¹ Mpc ⁻¹]	67.32	67.36 ± 0.54	67.39 ± 0.54	+0.1	67.37 ± 0.54
$\Omega_{ m m}$	0.3158	0.3153 ± 0.0073	0.3142 ± 0.0074	-0.2	0.3147 ± 0.0074
Age [Gyr]	13.7971	13.797 ± 0.023	13.805 ± 0.023	+0.4	13.801 ± 0.024
$\sigma_8 \dots \dots$	0.8120	0.8111 ± 0.0060	0.8091 ± 0.0060	-0.3	0.8101 ± 0.0061
$S_8 \equiv \sigma_8 (\Omega_{\rm m}/0.3)^{0.5}$	0.8331	0.832 ± 0.013	0.828 ± 0.013	-0.3	0.830 ± 0.013
Zre	7.68	7.67 ± 0.73	7.61 ± 0.75	-0.1	7.64 ± 0.74
$100\theta_*$	1.041085	1.04110 ± 0.00031	1.04106 ± 0.00031	-0.1	1.04108 ± 0.00031
$r_{\rm drag}$ [Mpc]	147.049	147.09 ± 0.26	147.26 ± 0.28	+0.6	147.18 ± 0.29

Baseline likelihood

Alternative likelihood

LCDM results robust to $\sim 0.5\sigma$ (where σ is small)

Model fits

LCDM best-fits:
$$H_0 = 67.3$$
 ($n_s = 0.966$, $\Omega_m = 0.32$, $\Omega_m h^2 = 0.143$) vs. best fit for $H_0 = 73.0$ ($n_s = 0.995$, $\Omega_m = 0.25$, $\Omega_m h^2 = 0.132$)

ΛCDM polarization/temperature consistency

CMB and BAO consistency in ΛCDM

z = 0

BAO ($z \sim 0.5$)

CMB ($z \sim 1060$)

Assuming Λ CDM + Planck sound horizon r_d

(transverse and other BAO also very consistent)

Planck CMB lensing \(\Lambda CDM \) parameters

$$H_0 = 67.9^{+1.2}_{-1.3} \text{ km s}^{-1} \text{Mpc}^{-1},$$

$$\sigma_8 = 0.811 \pm 0.019,$$

$$\Omega_m = 0.303^{+0.016}_{-0.018},$$

$$68 \%, \text{lensing+BAO}$$

Also adding robust CMB θ_* constraint: $H_0 = 68.0 \pm 0.7$ (68 %, lensing+BAO+ θ_*)

("Lensing-only" priors: $\Omega_{\rm b}{\rm h}^2=0.0222\pm0.0005$, $n_{\rm s}=0.96\pm0.02$, 0.4< h<1)

ΛCDM inverse distance ladder comparison

Note BAO inverse distance ladder and CMB θ_* degeneracies different - cannot have big fluctuation along one degeneracy direction

WMAP, Planck and inverse distance ladder Λ CDM constraints agree well (also ACTpol, SPTpol, BUT SPTpol find $H_0 = 71 \pm 2$ at l > 1000)

(c.f. Aubourg, Addison, Cuesta, Heavens, DES collaboration, etc et al.)

H_0 constraint model dependent ...but in practice constraint fairly robust to many model extensions

Table 5. Constraints on standard cosmological parameters from *Planck* TT,TE,EE+lowE+lensing when the base- Λ CDM model is extended by varying additional parameters. The constraint on τ is also stable but not shown for brevity; however, we include H_0 (in km s⁻¹Mpc⁻¹) as a derived parameter (which is very poorly constrained from *Planck* alone in the Λ CDM+ w_0 extension). Here α_{-1} is a matter isocurvature amplitude parameter, following PCP15. All limits are 68 % in this table. The results assume standard BBN except when varying Y_P independently (which requires non-standard BBN). Varying A_L is not a physical model (see Sect. 6.2).

Parameter(s)	$\Omega_{ m b} h^2$	$\Omega_{ m c} h^2$	$100\theta_{ m MC}$	H_0	n_{s}	$\ln(10^{10}A_{\rm s})$
Base ΛCDM	0.02237 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.54	0.9649 ± 0.0042	3.044 ± 0.014
r	0.02237 ± 0.00014	0.1199 ± 0.0012	1.04092 ± 0.00031	67.40 ± 0.54	0.9659 ± 0.0041	3.044 ± 0.014
$dn_s/d \ln k \dots \dots$	0.02240 ± 0.00015	0.1200 ± 0.0012	1.04092 ± 0.00031	67.36 ± 0.53	0.9641 ± 0.0044	3.047 ± 0.015
$dn_s/d \ln k, r \dots \dots$	0.02243 ± 0.00015	0.1199 ± 0.0012	1.04093 ± 0.00030	67.44 ± 0.54	0.9647 ± 0.0044	3.049 ± 0.015
$d^2 n_s / d \ln k^2$, $d n_s / d \ln k$.	0.02237 ± 0.00016	0.1202 ± 0.0012	1.04090 ± 0.00030	67.28 ± 0.56	0.9625 ± 0.0048	3.049 ± 0.015
$N_{ m eff}$	0.02224 ± 0.00022	0.1179 ± 0.0028	1.04116 ± 0.00043	66.3 ± 1.4	0.9589 ± 0.0084	3.036 ± 0.017
$N_{\rm eff}$, $dn_{\rm s}/d\ln k$	0.02216 ± 0.00022	0.1157 ± 0.0032	1.04144 ± 0.00048	65.2 ± 1.6	0.950 ± 0.011	3.034 ± 0.017
Σm_{ν}	0.02236 ± 0.00015	0.1201 ± 0.0013	1.04088 ± 0.00032	$67.1^{+1.2}_{-0.67}$	0.9647 ± 0.0043	3.046 ± 0.015
$\Sigma m_{\nu}, N_{\text{eff}} \ldots \ldots$	0.02223 ± 0.00023	0.1180 ± 0.0029	1.04113 ± 0.00044	66.0+1.8	0.9587 ± 0.0086	3.038 ± 0.017
$m_{\nu,\mathrm{sterile}}^{\mathrm{eff}},N_{\mathrm{eff}}$	$0.02242^{+0.00014}_{-0.00016}$	$0.1200^{+0.0032}_{-0.0020}$	$1.04074^{+0.00033}_{-0.00029}$	$67.11^{+0.63}_{-0.79}$	$0.9652^{+0.0045}_{-0.0056}$	$3.050^{+0.014}_{-0.016}$
α_{-1}	0.02238 ± 0.00015	0.1201 ± 0.0015	1.04087 ± 0.00043	67.30 ± 0.67	0.9645 ± 0.0061	3.045 ± 0.014
$w_0 \dots \dots$	0.02243 ± 0.00015	0.1193 ± 0.0012	1.04099 ± 0.00031		0.9666 ± 0.0041	3.038 ± 0.014
Ω_K	0.02249 ± 0.00016	0.1185 ± 0.0015	1.04107 ± 0.00032	$63.6^{+2.1}_{-2.3}$	0.9688 ± 0.0047	$3.030^{+0.017}_{-0.015}$
$Y_{ m P}$	0.02230 ± 0.00020	0.1201 ± 0.0012	1.04067 ± 0.00055	67.19 ± 0.63	0.9621 ± 0.0070	3.042 ± 0.013
$Y_{ m P}, N_{ m eff}$	0.02224 ± 0.00022	$0.1171^{+0.0042}_{-0.0049}$	1.0415 ± 0.0012	$66.0^{+1.7}_{-1.9}$	0.9589 ± 0.0085	3.036 ± 0.018
$A_{L}\dots\dots$	0.02251 ± 0.00017	0.1182 ± 0.0015	1.04110 ± 0.00032	68.16 ± 0.70	0.9696 ± 0.0048	$3.029^{+0.018}_{-0.016}$

Note:

No useful constraint in varying dark energy models, but consistently constrained adding SN/BAO Higher neutrino mass or dark energy with w > -1 only *lower* H_0 . Ω_K also pulls towards low H_0 .

Extra relativistic degrees of freedom ($N_{\rm eff} \neq 3.046$)

No preference from *Planck* alone, though errors somewhat increased.

 Λ CDM+ $N_{\rm eff}$ Planck+BAO: $H_0 = (67.3 \pm 1.1) \, {\rm km \ s^{-1} Mpc^{-1}}$ (still 3σ from Riess et al.)

Conclusions

Planck 2018 gives high-precision measurements of TT, TE, EE spectra and lensing

Systematic errors/modelling parameter uncertainties thought to be <1 σ . And σ is very small!

Angular acoustic scale θ_* measured to 0.03%.

Details of acoustic peak amplitudes constrain physical densities to percent precision.

CMB does not measure H_0 directly, but provides tight indirect constraints if a model is assumed.

Planck TT, TE, EE and lensing data consistent with Λ CDM and $H_0 \sim (67.4 \pm 0.5)$ km/s/Mpc.

Other CMB experiments and inverse distance ladder give consistent results.

No simple late-time model extensions substantially change H_0 without conflicting with lensing, SN and/or BAO.

Any change to early-universe physics to change r_s (and $r_{\rm drag}$) and hence inferred H_0 must reproduce observed spectrum shape quite accurately (changing $N_{\rm eff}$ does not) - Simons Observatory, S4 could detect small differences due to new physics not resolved by Planck/SPT/ACT

There are some other oddities in the Planck data fits - could hint at new physics (peaks slightly too smooth, dip at low ℓ) - are there any models which simultaneously change $r_{\rm drag}$, keep broad fit, but resolve oddities ??

The scientific results that we present today are a product of the Planck Collaboration, including individuals from more than 100 scientific institutes in Europe, the USA and Canada.

Parior - a project of the European Space Agency, with instruments provided by two scientific Consortia funded by ESA member states (in particular the lead countries: France and Italy) with contributions from NASA (USA), and telescope reflectors provided in a collaboration between ESA and a scientific Consortium led and funded by Denmark.