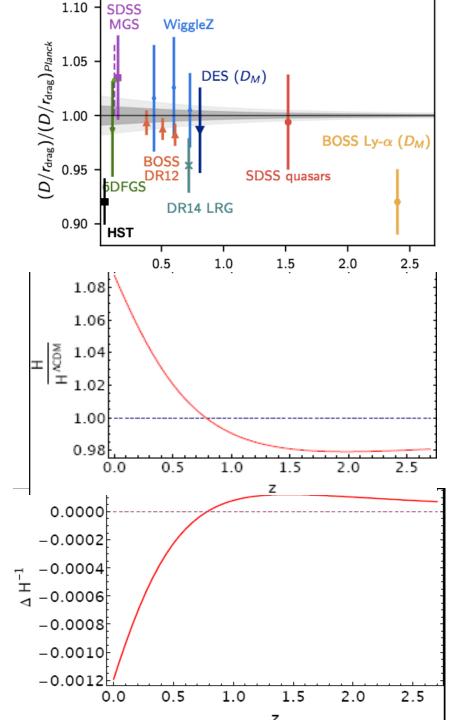
Quintessential Relaxation of Hubble Puzzle

Lisa Randall w/Prateek Agrawal Francis-Yan Cyr-Racine David Pinner

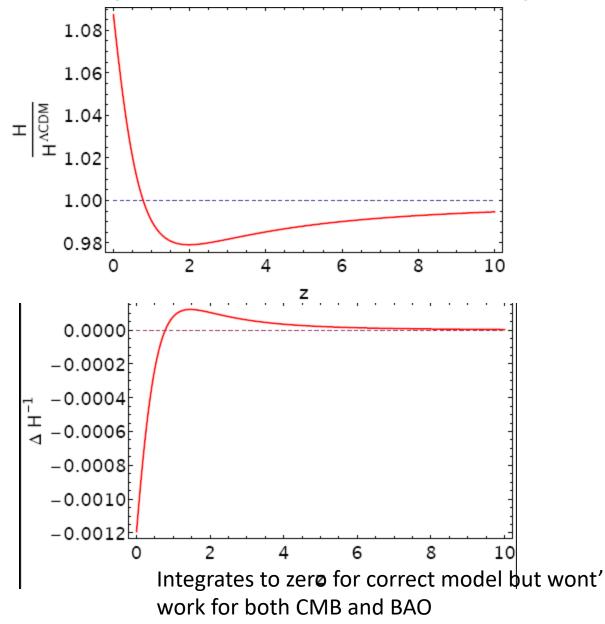
Hubble Discrepancy Important

Era of precision cosmology

- Detailed measurements
 - CMBR, BAO, SN, local (GAIA),...
- ACDM works incredibly well
- New physics can show up only in small deviations
 - Or on unexplored scales
 - Many glitches will go away
 - But worth paying attention to
 - As a model builder have to ask what it could mean
 - And how should we look further
- Hubble discrepancy direct probe of late time cosmology
 - Reason we do these measurements: does model work?
 - Or is there something we are missing?
- Whether or not it remains, an opportunity to find what we learn from more detailed measurements
- And to think about which measurements could be useful in the future


In Brief: Measurements and Parameters

- Measurements:
 - CMBR: Planck
 - BAO: BOSS,...
 - Lensing (Planck,...)
 - SN: SHOES, (JLA, PANTHEON)
 - H₀=73.24 +/- 1.74 km/sec/Mpc
 - Vs Planck with ΛCDM H0=68.29 +/- .49 (TT, lensing, BAO, ShoES)
 - Planck (TT, pol, lensing, BAO) 67.66 +/-.42
- When fitting: CMBR Extremely Well-Measured Parameters: drives fits
- BAO, HO measurements tugs
- But any model has to accommodate:
 - z_eq
 - $\theta_S = r_s/D_A *** drives a lot for us$
 - $\theta_D = r_{D(amping)}/D_A$ "CMB" Diffusion in High I modes
 - ρ_b / ρ_{DM} amplitude odd vs even peaks
 - Also (BAO) $\theta_{d(rag)}$ -= r_d/D_A ***drives also


What does large **H**₀ for fixed angular size of **sound horizon** at recombination (and BAO) tell us?

- Fixed $\theta_s \equiv \frac{r_s(z_\star)}{D_A(z_\star)}$ $r_s \equiv \int_0^{a_\star} \frac{c_s da}{a^2 H(a)}$ $D_A \equiv a_\star \int_{a_\star}^1 \frac{da}{a^2 H(a)}$.
 - If you don't change r_s (change H before or around CMB)
 - Need to balance + and changes in H
 - so that D_A stays at same value
 - This can work
 - But BAO would then generally changes if $\rm r_{\rm D}$ fixed
 - For most models you can raise H at one time and lower at another (eg decaying dark matter, N_{eff})
 - But one turnaround point as function of z
 - Can be hard to accommodate more than 2 data points (diff z)
 - Will see can only work to some extent because θ_d from BAO is a bit higher than ΛCDM predicts

Schematic: Try to change D_A By changing H₀ Also changes D_A BAO But in right direction This is made up Can't get both to work

Required Behavior (Toy)

How Do We See This in a Model?

- Why Model?
- Model allows you to see full effect
 - Background cosmology H(z), w(z)
 - But also Fluctuations
- General spline for H(z) or w(z) useful
- But don't necessarily get model-independent bounds
 - Bound really can depend on many parameters to implement the spline
 - Generally affects details, not only background cosmology
- And of course you want to know the physics
 - Model gives idea how parameters can be implemented

Some "models" proposed so far

- Late time models
 - Change after z_{eq}, z_{rec}
- Converting non-relativistic dark matter to radiation (decaying DM) Bringmann, Kahlhoefer, Schmidt-

Hoberg, Walia

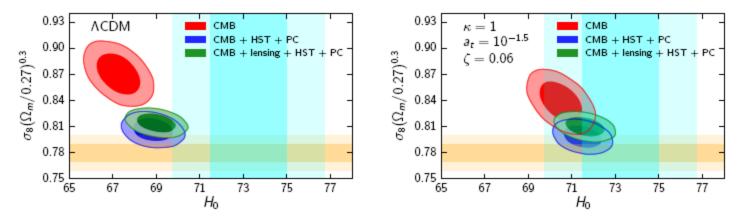
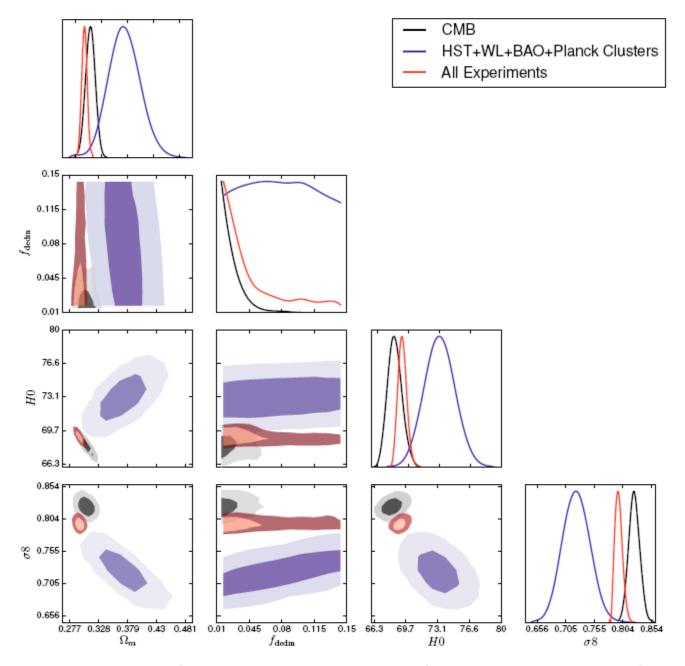
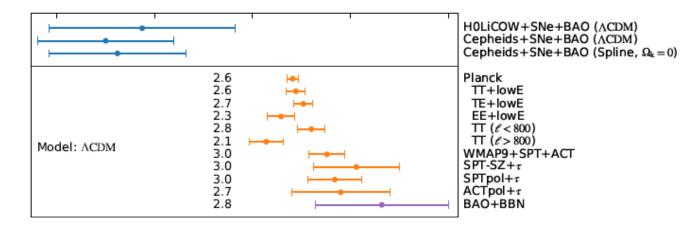



FIG. 8. Best fit regions for Λ CDM (*left panel*) and our model with $\kappa = 1$, $\zeta = 0.06$ and $a_t = 10^{-1.5}$ (*right panel*). The orange and cyan bands indicate the direct measurements of $\sigma_8(\Omega_m/0.27)^{0.3} = 0.78 \pm 0.01$ [55] and $H_0 = 73.24 \pm 1.74$ [49] respectively.

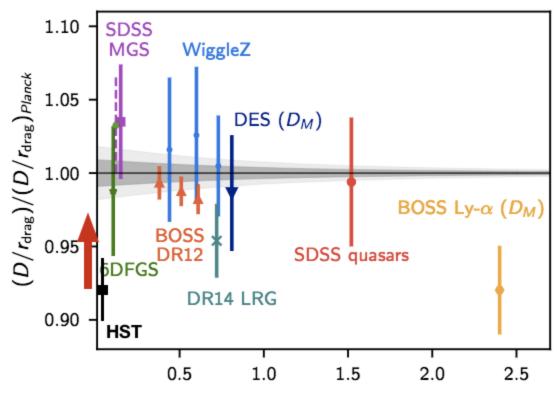
Mechanism?


- Work by trading off matter against dark energy to keep D_A fixed at CMB
- Lower energy density during matter domination; lower H
- Then more energy due to greater dark energy at CC domination
 - Dark energy "replacing" matter for same H_0 leads to smaller H at all earlier times implying larger D_A
 - To avoid this need to have larger H_0
 - Requisite negative and positive changes to H
- This paper didn't include BAO
- You can't fix both without an extra lever

Vivian Poulin,^{*a,b*} Pasquale D. Serpico,^{*a,b*} Julien Lesgourgues^{*b*}

No ONLY late time model works

KEVIN AYLOR,¹ MACKENZIE JOY,² LLOYD KNOX,¹ MARIUS MILLEA,^{3,4,5} SRINIVASAN RAGHUNATHAN,^{6,7} AND W. L. KIMMY WU⁸



H determined by Reiss and BAO disagrees with value from Planck

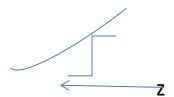
Alternatively fix rs from CMB and can't fit H from both BAO and Reiss

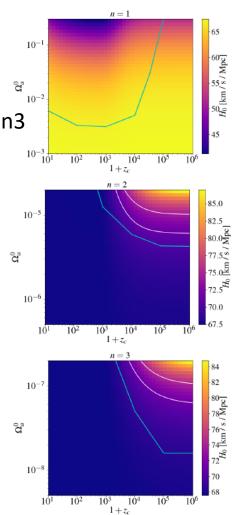
To Accommodate BAO Need Extra lever at "early" time: r_{s:}

- Changing r_s makes it more feasible to accommodate both BAO and SHoES
- Extract bigger H values from CMB and BAO
- Easier to accommodate SHoES

Alternative: Early Time Models: just change r_s Early Dark Energy?

Vivian Poulin1 , Tristan L. Smith2 , Daniel Grin3 , Tanvi Karwal1 , and Marc Kamionkowski1


Early dark energy to raise H and hence sound horizon
Rapid elimination
Potential of form


```
V_n(\phi) = \Lambda^4 (1 - \cos \phi / f)^n,
```

•But not enough change in H for any n

•Best is n=2

•CMB rules out model for ShoES values •Energy vs z

15

Figure 8: Hubble parameter H_0 for various values of Ω_a^0 and z_c , for the n = 1 (top panel), n = 2 (middle panel) and n = 3 case (bottom panel). The cyan line represents the constraints shown in Fig. 6. The white contours show the 1σ contour on the H_0 value measured by SHOES.

Early Time Models: N_{eff}

- Zeq In ΛCDM, this is ^{ρm,0}/_{ρrad,0} − 1.
 - Change radiation and DM
 - Both can contribute to changing rs
 - Radiation ha sound speed1/
 - Interacting radiation has sou
 - Zero sheer from interactions

Manuel A. Buen-Abad and Martin Schmaltz*

Parameter mean values and 68% CL confidence interval (or 95% CL upper limit), lin. priors				
Parameters	ACDM	WI limit	DP limit	
$100\omega_{\rm b}$	$2.245^{+0.013}_{-0.014}$	$2.249^{+0.018}_{-0.019}$	$2.242^{+0.017}_{-0.019}$	
ns	$0.9656\substack{+0.0038\\-0.0037}$	$0.9708\substack{+0.0044\\-0.0041}$	$0.9701\substack{+0.0038\\-0.0042}$	
$\tau_{\rm reio}$	$0.04887\substack{+0.008\\-0.008}$	$0.05915\substack{+0.0082\\-0.0078}$	$0.06118\substack{+0.0093\\-0.0086}$	
H_0	$68.67\substack{+0.41\\-0.46}$	$70.01^{+1.1}_{-1.2}~(95\%$ CL: 72.21)	$69.13^{+0.76}_{-1.3}\ (95\%\ {\rm CL:}\ 71.32)$	
$\ln 10^{10} A_s$	$3.023\substack{+0.015\\-0.015}$	$3.05\substack{+0.017\\-0.017}$	$3.056_{-0.019}^{+0.022}$	
$\omega_{\rm dm}^{\rm tot}$	$0.1168\substack{+0.001\\-0.00089}$	$0.126\substack{+0.0032\\-0.0039}$	$0.1235\substack{+0.0017\\-0.0033}$	
$\Delta N_{\rm fluid}$	0	$0.369^{+0.17}_{-0.19}~(95\%~{\rm CL}:\leq 0.6657)$	$\leq 0.5064~(95\%~{\rm CL})$	
$10^7\Gamma_0$	0	$1.097\substack{+0.32 \\ -0.32}$	$\Gamma_0 \gg H_0$	
f	0	1	$0.01387\substack{+0.0052\\-0.0046}$	
$100\theta_{\rm s}$	$1.042\substack{+0.00028\\-0.0003}$	$1.043^{+0.00035}_{-0.00037}$	$1.043\substack{+0.00036\\-0.00038}$	
σ_8	$0.7933\substack{+0.0052\\-0.0054}$	$0.7721_{-0.01}^{+0.01}$	$0.7734_{-0.012}^{+0.011}$	
$\Omega_{\rm m}$	$0.2968\substack{+0.0057\\-0.0053}$	$0.3043^{+0.0067}_{-0.0053}$	$0.3067^{+0.0074}_{-0.007}$	

TABLE III: Parameter mean values and 68%CL confidence interval (or 95%CL upper limit), in the W and DP cases, with linear priors on all parameters.

Early Models

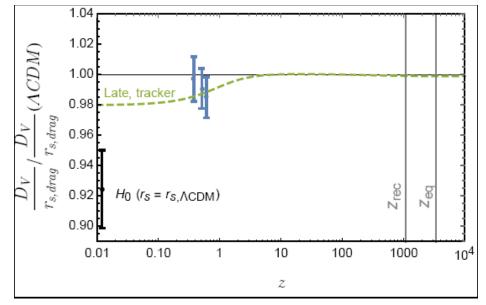
- Don't get far enough with H
- Limited because CMBR well-measured!
- And you are messing with Universe near CMB time
 - Harder to pin down precise failure mode
 - Depends on details

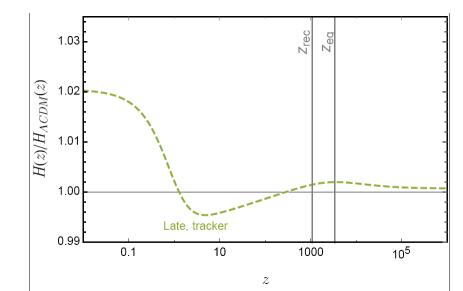
Agrawal, Cyr-Racine, Pinner, Randall New Model: automatically combines early and late time solutions $-\mathcal{L} \supset \frac{1}{2} (\partial_{\mu} \phi)^{2} + \frac{1}{2} (\partial_{\mu} \chi)^{2} + \frac{1}{2} m^{2} \chi^{2} \left(1 + y \frac{\phi}{M_{\rm pl}}\right) + V_{\phi},$

- Rolling scalar field Φ; X is dark matter
 - Motivated by quintessence models
 - Requisite dark energy at the end

$$V_{\phi} \equiv V_1 e^{-\lambda_1 \phi/M_{pl}} + V_2 e^{-\lambda_2 \phi/M_{pl}}$$

- We choose large λ_1 to get tracker solution
- See Shinji Tsujikawa review
- y coupling changes dark matter mass
- Small λ_2 to get flat potential today—essentially cc at the end


Scalar Model


- Allows us to systematically investigate separate effects
- Tracker interesting in that it is like
 - Radiation early, matter intermediate, dark energy late
- Model automatically has ingredients in late and early universe
- Key to late time solution is removing dark matter between CMB and today (like decaying dm) but here by changing dark matter mass
- To keep D_A constant need additional dark energy
 This is what raises H in the end
- At early time we have additional V(Φ) energy
- Will raise r_s
 - But only for low λ_1

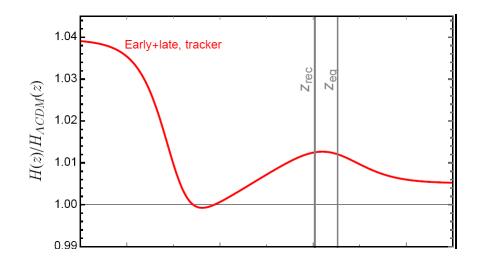
Dark Matter (Late Time) Evolution


- Dark matter energy changes relative to ordinary model by
 - Late time evolution after CMB
- $y \Delta \Phi / M_p$
 - $\Delta \Phi$ will be from tracker solution
 - $-\Delta \Phi$ from z_{eq} to z_0 is about
 - 25 M_p/λ_1
 - Net change (follows from tracker energy) 25 y/ λ_1
 - Often about 8% in best fit
 - ~3% change to H

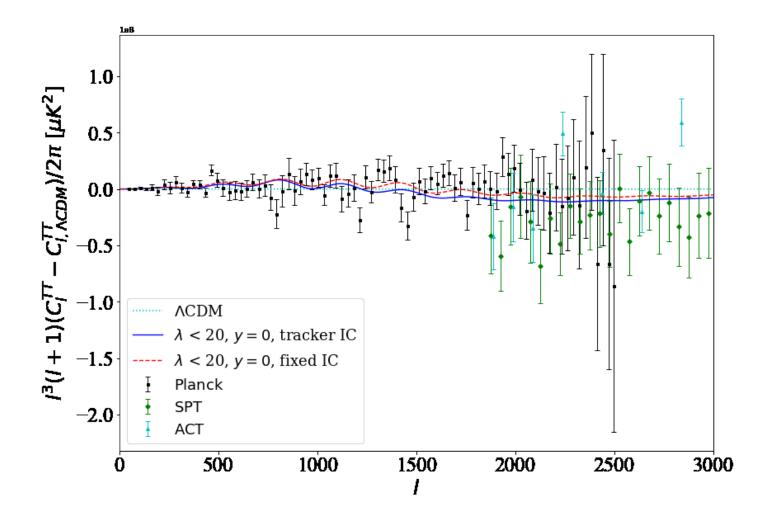
Late time (large λ_1 result)

Just late time similar to decaying dark matter

Good but not enough for SHoES

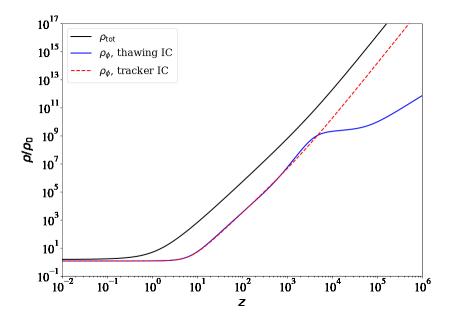

Adjust r_s : Add early time with small λ_1 Intuition on Tracker Solution

- Energy in Φ at early times
- 4/λ₁² ρ
- Early time: additional contribution to H For sufficiently small λ_1 can get reduction in rs
- Automatically allows early AND late time modules
 - Seems to be necessary

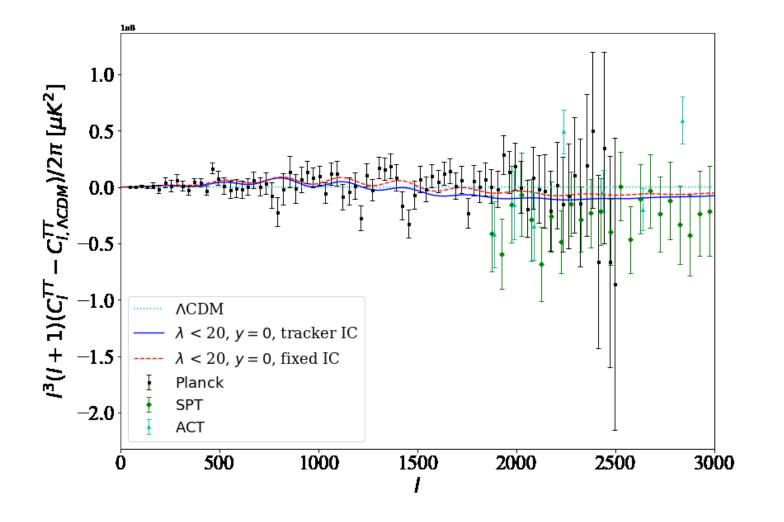

Turns out still not enough

- Early tracker stage tracking radiation
- Too much "radiation" in early stages
- Damps high I contribution

Early +Late Hubble

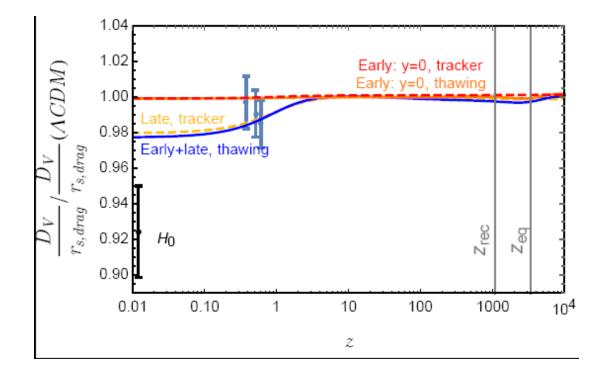


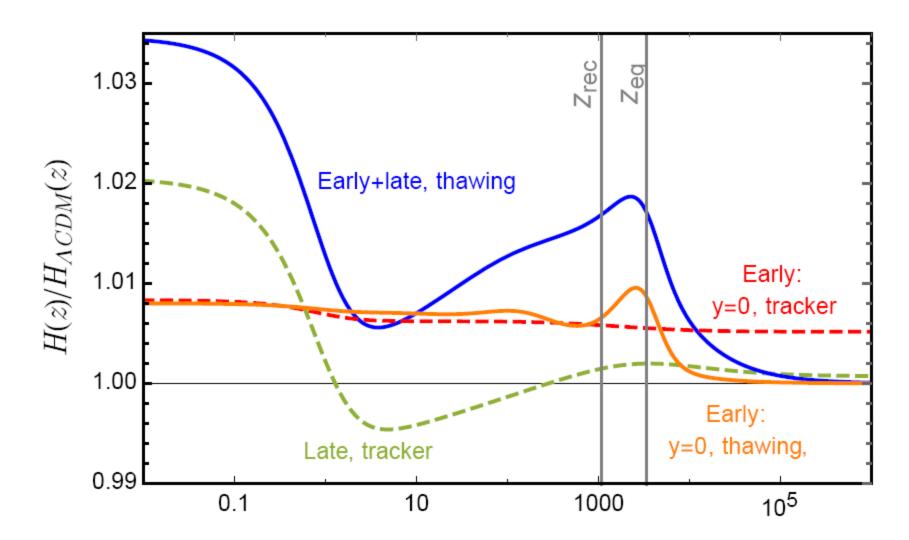
Insight?: CMB Residuals with fixed vs tracking ic

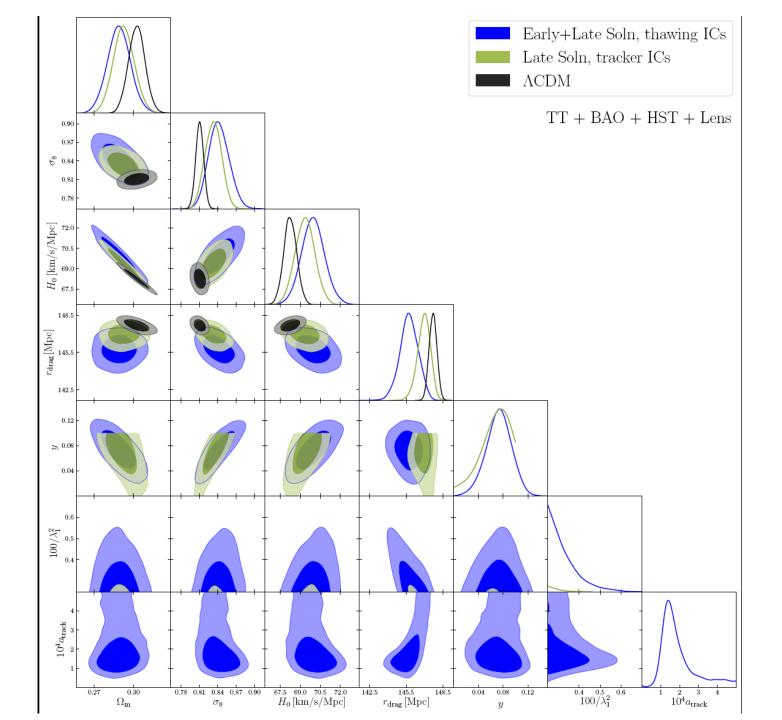


•Change initial condition: Tracker vs Tracker/Thaw

•Hope for better behavior at high I


CMB Residuals with fixed vs tracking ic


Best Implementation


- Large enough y to get late time effect
- Small enough λ_1 to get early time effect
- Late enough tracker initial condition to save high I modes

Comparison Early+Late Does Better on BAO

Early+Late+Thaw Does Best

Seems CMB, BAO, HO requires (at least) two modules

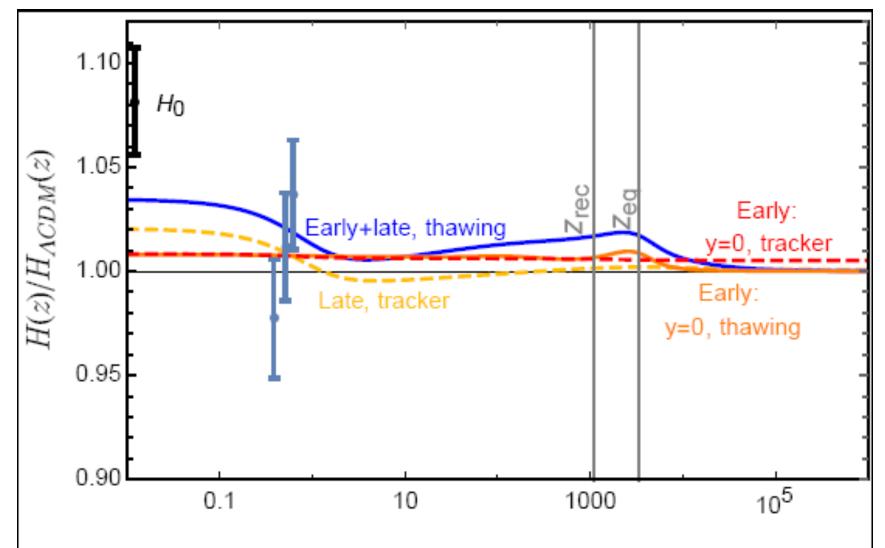
Early: rs

- Neff
- Decaying DE
- Extra "DM" (via Φ)

Late: DA

- Decaying DM ; Add DE
- Remove DM (via Φ); Add
 DE

• Extra "DM" (via Φ with ic)


Probably our model better for Planck than Neff at high I Less energy for given shift in rs which is IR dominated Extra degrees of freedom suppressed by suppression of radiation contribution to H at CMB time We have less damping high I tail Sheerless like interacting Neff so less phase shift potentially too Plus with ic extra radiation turned off for most high I modes

*Planck clusters artifically eleveated interacting Neff goodness of fit

Model somewhat better at high I (especially with polarization data)

Model	LCDM	LCDM+Nett	Vary IC, 10 < Lambda < 20
(Delta) chi^2	11084.19	-1.8	-1.18
-Planck low I	10494.84	-0.66	1.59
-Planck high I TTTEEE lite	566.67	4.64	1.85
-Planck lensing	9.22	0.3	0.22
-HST	9.02	-5.76	-6.23
-BAO	3.56	-0.04	1.07
-simlow (tau_r)	0.87	-0.27	0.34
H0 (best fit)	68.01	70.1	70.33
H0 (95% CL)	68.82	72.36	71.59
Omega_m	0.305	0.302	0.286
sigma_8	0.812	0.828	0.848
lambda_1			20
у			0.077
z_track			9260
dNeff		0.435	

All Vairiants: still not quite there...

Conclusion

- Discrepancy hard to resolve
 - An awful lot is measured
 - It is difficult to change late time universe in an acceptable way
 - In my experience "too good to be true" is usually not true
- Our model does (at least) as well as any
 - And sheds light on issues
- Could be a discovery of *late time evolution
 - *late includes at or near CMB
- Which of course would be very exciting
- This will be resolved in future:
 - Gravity wave measurements of H
 - Lensing measurments
 - Improved BAO measurements
 - Especially if gets rs as well
 - H(z) from SN eg Pantheon constraining more
 - w(z) measurements !!
 - Models give different energy domination time
 - Release of Planck 2018 will help too
- Hard to reconcile most extreme values: sound speed? Perturbation spectrum?
- Interesting to see what happens with further low z measurmeents
 - Not just CMBR dominated
 - Clearly a tradeoff—no perfect match
- Our only ways to explore the late time universe
- Let's make the most of it