Poster Session 1 / Monday, Jan. 11 / 15:45 – 17:00 h (14 Posters)

# in session	Name	Title
P01	Ondrej Cernotik	Microwave entanglement created using swap gates with biased noise
P02	Ivari Pietikäinen	Microwave swap gates with a Kerr-cat ancilla
P03	(cancelled at short notice)	
P04	Max Werninghaus	Optimal Control of Superconducting Qubits
P05	Gaurav Bhole	Rescaling Interactions for Quantum Control
P06	(cancelled at short notice)	
P07	Tobias Hangleiter	Filter Function Formalism for Quantum Operations
P08	Ashish Mani	Towards quantum evolutionary search and optimization on NISQ devices
P09	Göran Wendin	Benchmarking the Variational Quantum Eigensolver for Quantum Chemistry on High- Performance Computers
P10	(cancelled at short notice)	
P11	Rebekka Garreis	Charge detection in electrostatically defined quantum dots on bilayer graphene
P12	Chuyao Tong	Tunable Valley Splitting in Bilayer Graphene Quantum Dots

		Posters
P13	Amin Hosseinkhani	Theory of valley splitting and valley-induced relaxation of a single silicon spin qubit in the presence of interface disorder
P14	Riccardo Borgani	Adapting 5G-telecom hardware for the control of quantum computers
P15	Seref Kalem	Silicon quantum pillars for possible scalable HW platforms
P16	Mats Tholén	General-Purpose firmware for controlling quantum processors
P17	Robert Gartmann	Highly integrated RF electronics to interface superconducting qubits

Posters

Poster Session 2 / Tuesday, Jan. 12 / 15:45 – 17:00 h (17 Posters)

# in session	Name	Title
P01	Daniel Jirovec	A depletion mode hole spin-qubit in Ge
P02	Theodor Lundberg	Accurate Readout of Spin States in Silicon Nanowire Quantum Dots
P03	Andras Palyi	Charge noise and overdrive errors in reflectometry-based qubit readout
P04	Adrien Morel	Cryogenic current-steering DAC for biasing of quantum dots
P05	Réouven Assouly	Number-resolved photocounter for propagating microwave mode
P06	Michael Renger	Beyond the standard quantum limit of parametric amplification
P07	Clemens Müller	Quantum rifling - Protecting a qubit from measurement back action
P08	Mikko Möttönen	Radio frequency quantum-circuit refrigerator and the resulting photon-number-dependent Lamb shift
P09	Jeremy Stevens	Cavity-photon induced state transitions in a coupled Fluxonium quibt system
P10	(cancelled at short notice)	
P11	Federico Roy	Control, Calibration and Characterization of superconducting qubits

Posters

P12	Richard Gebauer	Integrated scalable electronics platform to interface superconducting quibts
P13	Oliver Sander	Partitioning of functionality for superconducting qubit control and readout
P14	Camille Chartrand	A silicon-integrated telecommunications photon-spin interface
P15	Albert Hertel	Electrical properties of selective area grown superconductor-semiconductor hybrid structures on silicon
P16	Matthias Rößler	Top-down Topological Insulator Nanowires for Majorana-Qubits
P17	Rubén Seoane Souto	Optimal manipulation of Majorana bound states using quantum dots
P18	Manohar Kumar	Anyonic statistics in collider geometry

Poster Session 3 / Wednesday, Jan. 13 / 11:00 – 12:30 h (17 Posters)

# in session	Name	Title
P01	Janine Hilder	A shuttling-based trapped-ion quantum information processing node
P02	Christian Melzer	Control Software Stack for Shuttling-Based Trapped-Ion Quantum Computing
P03	Daniel Wessel	Components for scalable quantum logic with trapped ions
P04	Matthias Mergenthaler	Effects of surface treatments and packaging on transmon qubits
P05	Uwe von Lüpke	Flip chip technique for hybrid quantum systems
P06	Martin Weides	Coherent superconducting qubits from a subtractive junction fabrication process
P07	Benedikt Kratochwil	The CQ3 Qubit spectroscopy and coherence
P08	Jacob Koenig	Selectively Activated Photon-Hopping, Cross- Kerr, and Two-Mode Squeezing via Flux Modulation of a Tunable C
P09	Benjamin Schiffer	Faster adiabatic ground state preparation with few measurements
P10	Nicolas Wittler	An integrated tool-set for Control, Calibration and Characterization of quantum devices applied to superconducting qubits

		Posters
P11	Xiaosong Ma	An integrated heterogeneous superconducting-silicon-photonic platform for quantum network
P12	Hugo Doeleman + Tom Schatteburg	Towards quantum optomechanics using bulk acoustic wave resonators
P13	Tomas Ramos	Scalable multiphonon generation from cavity- synchronized single-photon sources
P14	Rene Otten	Scalable Cryogenic Control of Spin quibts
P15	Florian Ginzel	Spin Shuttling in a Silicon Double Quantum Dot
P16	Cécile Yu	High-Impedance NbN Microwave Resonator as a Quantum Bus for Si Hole Spin Qubits
P17	Jann Hinnerk Ungerer	Engineering of a semiconductor charge qubit coupled to a resonator – From coherence protection to ultrastrong coupling