Poster session I: Teaching resources

1.01	Markus Pössel	Relative motion in general relativity: The case of cosmic expansion
1.02	Lorenzo Galante	From the EP to the curved space
1.03	Hans-Peter Nollert	Teaching General Relativity using ruler and calculator: An interactive workshop based on the Shapiro effect
1.04	Richard Toellner	The Milne universe
1.05	Matěj Ryston	Embedding diagrams and other hands-on activities for teaching curvature
1.06	Efstratios Kapotis	Educational experimentation and simulations for teaching General Relativity. Implementation and Evaluation
1.07	Sven Weissenborn	Virtual sector models (ViSeMo)
1.08	Stuart Farmer	Developing a teacher professional learning workshop on General Relativity
1.09	Michael Schultz	Teaching 2nd year undergraduates how to derive and study the geodesic equations for the Schwarzschild black hole
1.10	Aroonkumar Beesham	Teaching of general relativity at the University of Zululand
1.11	Eugene Kogan	Derivation of Schwarzschild metrics using differential forms
1.12	Yurii Dumin	A quasi-newtonian basis for studying the relativistic cosmology
1.13	Floor Kamphorst	Event diagrams – supporting student reasoning in space-time
1.14	Essam Zoabi	Simple mechanical model for explaining the increase of the relativistic mass
1.15	Roberto Salgado	Relativity on rotated graph paper

Poster session II: Design, evaluation, programs

2.01	Shachar Boublil	Analysis and reflection on the teaching of Einstein's theory of gravity in Quebec
2.02	Stanley Delhaye	Design of a prototype for teaching general relativity to upper secondary students
2.03	lan Lawrence	Light cones for reasoning about space and time
2.04	Li Ju	Gravitational waves: A vehicle for the integrated teaching of Einsteinian physics
2.05	Chris North	Increasing the relevance of high school studies to cutting edge gravitational wave research
2.06	Rahul Choudhary	Integrating Einstein-first resources with international collaboration on Einsteinian physics
2.07	Gary Foster	Teaching Einsteinian science at Guildford Grammar
2.08	Richard Meagher	Do modern high school students want to study modern physics?
2.09	Fadeel Joubran	Comparison between Israeli and Hungarian physics high school teachers' attitudes towards GR assimilation in the curriculum
2.10	Stephan Preiß	A comparison between standard courses about general relativity and a model-based approach
2.11	Thomas Reiber	Flying through a Kerr black hole – Visualizations
2.12	Pierre Martin- Dussaud	L'Agape: Renewing conferences format
2.13	Amber Strunk	Supporting general relativity curriculum through teacher professional development
2.14	Magdalena Kersting (presentation) Jacqueline Bondell/ Mark Myers (authors)	Bringing the virtual universe into the STEM classroom