QFC2019 Overview ("wrap up")

Jussi Eloranta (eloranta@aa6kj.hopto.org)
California State University, Northridge
Helium droplet research “family tree”

Helium droplets

Superfluidity and theory
- Finite-size effects
- Translational vs. rotational superfluidity
- Quantized vorticity
- Superfluid dynamics
- Confinement effects
- $^3\text{He}/^4\text{He}$ mixtures

Spectroscopy and imaging
- “Clean” solvation of atoms & molecules!
- Low temperature and weak interaction
- High-Res. spectroscopy
- Molecular alignment
- Internal excitations

Novel structures and solvation
- Thin nanowires at low temperatures
- Low temperature chemistry (complexes)
- Solvent-bound species (“quantum gels” etc.)
- Soft landing
Superfluidity

Quasiparticle approach to far-from-equilibrium dynamics of molecules in helium nanodroplets (Mikhail Lemeshko):

- Angulons provide a general framework to study angular momentum dynamics in quantum many-body systems
- Shown to work for rotation of molecules in (large) superfluid helium droplets
- Application: modeling of the dynamics following molecular alignment in helium droplets
Can 0.4 K He induce electronic relaxation? The case of Rb and Ba+ @ superfluid He droplets (Nadine Halberstadt et al.):

- Non-adiabatic crossings between electronic states (answer: yes)
- Employed both He-TDDFT and quantum molecular dynamics with non-adiabatic transitions
- He-TDDFT can model atomic scale dynamics in helium droplets very accurately
Superfluid helium nanodroplets: The many impurities, many vortices cornucopia (Manuel Barranco et al.):

- He-TDDFT of vorticity in helium droplets and capture of impurities (Ar, Xe) as pertaining to experimental visualization of vorticity
- Modeling of superfluid droplet shapes
- “Educational speech” on vorticity in helium: vortices in superfluid helium are *irrotational* (curl is zero). Classical vorticity has non-zero curl and real flow. *Very much appreciated speech!*
Superfluidity & theory

General question on Landau critical velocity:

- Landau critical velocity is related to creation of rotons
- Feynman critical velocity is related to creation of vortices
- At least to pressures up to 10 bar, the dissipation mechanism is due to Feynman. Above this pressure, Landau process may appear (?)

General question on size dependence of the critical velocity:

Kinetic energy around the bubble vs. vortex ring creation energy. Critical velocity on macroscopic scales is just few cm/s

Imaging controlled complex in helium droplets with Coulomb explosion (Adam Chatterley et al.):

- Determine structure and in the future dynamics of weakly bound complexes
- Cooling by helium droplets reduces the number of possible conformers – not possible in practice without this!
- Long-pulse laser alignment of molecules with subsequent ionization leading to Coulomb explosion:
Two-dimensional coherent spectroscopy of doped helium nanodroplets (Frank Stienkemeier et al.):

- 2-D femtosecond spectroscopy (4-wave mixing) that yields unprecedented spectral-temporal resolution
- Rb_2: Vibrational wavepacket dynamics example
- Rb_3: Desorption dynamics from helium droplet surface
- Future application: Dynamics of charge transfer complexes
Controlled molecules and nanoparticles (Jochen Küpper):

- Orientation by electric fields allowing separation of structural isomers and cluster sizes
- Focusing and separation of very large (bio)molecules
- Fixing molecular and laboratory frames for imaging:
Ultrafast dynamics in helium nanodroplets (Daniela Rupp):

- Time-resolved light scattering (Mie theory) for imaging of nano-scale objects (nanoparticles, helium nanodroplets)
- Determination of 3-D shapes of pure helium droplets, dynamics of helium droplet fragmentation
Polar molecules trapped in helium nanodroplets: electric field deflection, size separation, charge migration (Vitaly Kresin):

- Deflection of helium droplets with solvated polar molecule
- Measurement of dipole moment of the dopant
- Polar assemblies: monomers, dimers, trimers, etc. deflect differently
- Neutral droplet size separation by deflection
Intermolecular decay mechanism in doped helium droplets

induced by XUV radiation (Aaron LaForge):

- Helium droplet enhanced double ionization of dopants
- Ionization of He atoms in the droplet result in double ionization of the dopant (Mg$_n$; ETMD)
- Resonant excitation of helium droplet produces double ionization of the dopant (alkali dimers; dICD)
- Model system for condensed matter ionization processes
Shapes of rotating 3He droplets (Swetha Erukala):

- X-ray scattering image analysis of non-superfluid 3He droplets
 (same method as used previously for 4He droplets)

- Various shapes observed: Spheroidal, Ellipsoidal, Streaked:

- No trapping of Xe in vortices but they accumulate in ring on the outer wall of the droplet?
Accessing different binding sites of a multifunctional molecule in helium droplets (Devendra Mani et al.):

- Complex formation between propagyl alcohol and water within helium droplets
- Combined electronic structure and IR spectral analysis shows that the two structures formed predominantly are NOT the lowest energy configurations
- Long-range dipole-dipole interactions dominate the complexation
Accessing challenging molecular species using helium droplets: clusters, complexes, and ions (Andrew Ellis et al.):

- IR spectroscopy of acetic acid and formic acid dimer and trimer cations in helium droplets

- Identification of their structures by combining electronic structure calculations

- Some surprises, e.g., the lowest energy structures not seen?
Spectroscopy of mass/charge selected cations and anions in helium droplets (Gert von Helden et al.):

- Fluorine chemistry - reactions with small molecules
- IR depletion spectroscopy of mass selected cations and anions
- Thermochemical access using thermalized ion trap
- Analysis of complex stereo-selective reactions:
Photoinduced formation of RbSr molecules on helium droplets from spatially separated Rb and Sr atoms (Florian Lackner et al.):

- R2PI spectroscopy of Sr, Sr$_2$, and RbSr on helium nanodroplets
- Photo-induced formation of SrRb and Sr$_2$ on the droplet (?)
- Evidence for Sr being inside AND outside the droplet
- How common phenomenon is this? Only very few examples so far?
Infrared spectroscopy of alkyl radicals in helium droplets and solid para-hydrogen (Gary Douberly et al.):

- Characterize radicals relevant to low-temperature combustion
- Mass and IR spectrometry of pyrolytic decomposition of organics (n-propyl and i-propyl)
- Low temperature of helium droplets allows for high-resolution IR
- Local model Hamiltonian approach with possible empirical prescription for some of the off-diagonal elements
Acid solvation versus dissociation at “stardust conditions”:
reaction sequence matters! (Martina Havenith et al.):

- Hydrogen bonding of water using IR spectroscopy
- Solvation of HCl in water clusters vs. deprotonation of HCl?
- Deprotonation at four water molecules but this depends on the order: adding acid to water or adding water to acid (deprot)

“Adding water to acid results in a splash!”
Femtosecond photoexcitation dynamics of atoms and molecules inside helium nanodroplets (Markus Koch et al.):

- Dynamics of In and In$_2$ in helium droplets
- In resides inside the droplet and excitation opens up a bubble (30 ps) but is then ejected from the droplet:
- Wavepacket dynamics of In$_2$ inside the droplet (dissipative environment)
Stark-spectroscopy investigations of large organic molecules in superfluid helium nanodroplets (Alkwin Slenczka et al.):

- Stark spectroscopy of large organic molecules
- Aim at the zero phonon line and identify the rotational structure
- Demonstration of the method by observing the ZPL intensities
- Mystery: Adding one H$_2$O molecule changes the Stark response of the ZPL?
Auger emission from the Coulomb explosion of helium nanoplasmas (Josef Tiggesbäumker et al.):

- Coulomb explosion of helium droplets: fast electrons, energetic ions in high charge states, xrays
- Charging Xe clusters inside droplets and pure droplets
- Observation of Auger emission from plasma with structure corresponding to one-electron He$^+$
Quantum vortices in superfluid helium droplets (Andrey Vilesov):

• Introduction to quantum vortices (also stressing curl $\nu = 0$)
• Connection between vorticity and droplet shapes (capillary waves important in prolate droplets)
• Trapping of impurities by vortices and helium droplets
• Detection of vorticity in droplets by ultrafast xray and XUV tech.
• Analysis of scattering images
Serial single molecule electron diffraction imaging: a journey

(Wei Kong):

- Serial single molecule electron diffraction imaging
- Methods for determining molecular structure (proteins)
- New method for determining structure without single crystals
- Diffraction pattern of (rotating) ferrocene, molecular iodine + dimer (structure), pyrene in droplets (monomer, dimers)
- Proteins in droplets and alignment (aniline; suppressed ionization; coexistence of two cations in one droplet)
Ultrafast energy- and charge-transfer in He nanodroplets studied by femtosecond XUV and X-ray techniques (Oliver Gessner):

- X-ray and XUV excitation of helium droplets (pure and Rg doped)
- Complex electron-nuclear dynamics after excitation (pump-probe)
- Mechanism of solute-solvent energy and charge transfer processes
- Unentangle the dynamics by XUV + UV femtosecond spectroscopy
- Time-resolved imaging of strong-field induced cluster dynamics
Strong-field nanophysics: new routes to imaging the classical and quantum dynamics of finite systems (Thomas Fennel):

- Classical and quantum aspects of light-matter interactions by multicolor pump-probe spectroscopy (clusters in strong fields)
- Characterization of XUV induced plasma by “nanoplasmoscilloscope” - XUV multistep ionization (Ar clusters; MD simul.)
- Quantum coherent diffractive imaging (CDI): spatiotemporal dynamics by XUV (1s-2p resonant)
Multiply charged helium droplets (Paul Scheier et al.):

- Controlled production of large droplets with \(-6 \leq Z \leq +30\)
- Charged centers in the droplet provide growth centers for dopants with size tuning (and possibly route for new chemistry!)
- Application also to Helium tagging spectroscopy

“Delicate balance between repulsion between the charges and attraction to the droplet”
Stepwise solvation of polycyclic aromatic hydrocarbons by helium: curvature and dynamical effects (F. Calvo et al.):

- First solvent shell is strongly localized (near hexagonal & pentagonal sites)
- The following shells are less localized
- Stabilization of helium between dimers? (solvent shell effects; “quantum gels”)
- However, the effect of exchange?
Experimental characterization of low-temperature surface reactions (Serge Krasnokutski et al.):

- Determination of lowest energy structures based on evaporation of helium from droplets (“nanocalorimeter”; pressure monitoring)
- Data can be compared directly with energetics from \textit{ab initio} calculations (identification of products)
- First observation of C$_2$O$_2$ – structure was non-linear!
Influence of electron scattering on the properties of the hydrated electron (Ruth Signorell):

- Electron scattering from water clusters by angle-selective photoemission
- Determine the differential scattering cross-section as a function of energy and determine the electron binding energy
- Goal: solvation structure of the electron in water and the existence of long-lived surface states
What have I been up to recently?

First observation of bright solitons in superfluid 4He:

And on quantum vorticity/turbulence:

GPU implementation of He-TDDFT

Flow past a sphere above the Feynman critical velocity

BIG THANKS TO THE ORGANIZERS!!!!!!!!!