

Wei Kong, Chemistry

Serial single molecule electron diffraction imaging: A Journey

Serial single molecule electron diffraction imaging

Results

Electron diffraction of neutral molecules in droplets

Doping proteins – GFP

Unique properties of large droplets

The journey continues ...

Structure Tools Comparison

Structure Tools Comparison

State of the Field

Single Molecule Diffraction

"Diffract & Destroy" Neutze, R., Wouts, R., van der Spoel, D., Weckert, E. and Hajdu, J., Nature 406 (2000) 752. Serial Single molecule Electron Diffraction Imaging (SS-EDI)

Beckmann, Kong, Voinov, Freund, US Patent: 9,279,778 (2016).

- Each particle produces one image
- Each image may be from a different orientation
- Particle orientation needs to be determined from image
- Orientational distribution has to be uniform

Light source: intense & short (< 100 fs)</p>

- Detector: high quality
- Image: good enough for orientation assignment

Diffract and Destroy

Electrons vs nuclei?
Electron movement: < 1 fs

IMPOSSIBLE?

Fratalocchi, A. and Ruocco, G., "Singlemolecule imaging with X-ray free-electron lasers: Dream or reality?" Phys. Rev. Lett. 106 (2011) 105504.

Serial Single molecule Electron Diffraction Imaging (SS-EDI)

Beckmann, Kong, Voinov, Freund, US Patent: 9,279,778

Zhang, He, and Kong, J. Chem. Phys. 144, 221101 (2016).

Electron diffraction of iodine in droplets

Electron diffraction of iodine in droplets

Electron diffraction of iodine in droplets

Diffraction HALF Electron diffraction of iodine in droplets

He, Zhang, Lei, and Kong, Angew. Chem. Int. Ed. 56, 3541 (2017)

Isomers of pyrene dimer

Slipped Parallel (SP-L) Graphite type (Gr) Slipped Parallel (SP-S)

Protein Half: GFP in Droplets

Protein Half: GFP in Droplets

Alghamdi, Zhang, Oswalt, Porter, Mehl, and Kong, J. Phys. Chem. A 121, 6671 (2017).

Protein Half: GFP in Droplets

Alghamdi, Zhang, Oswalt, Porter, Mehl, and Kong, J. Phys. Chem. A 121, 6671 (2017).

Probing Molecular Alignment Alignment of doped GFP: Fluorescence and ionization

Ryan Mehl Unnatural Protein Facility

Supplementary funding from NIH: New femtosecond laser for Coulomb Explosion

Nonthermal Ejection

Nonthermal Ejection of R6G

Forbes, M. W., & Jockusch, R. A. (2011)

Brauer, N. B., Smolarek, S., Zhang, X., Buma, W. J., & Drabbels, M. (2011)

Size matters!

- > Small droplets (<10⁵): gas like
- > Large droplets (>10⁶): bulk like
 - Suppression of MPI
 - Multiple charges in one droplet
 - Suppression of charge transfer

Missions to be accomplished

Reduce size of droplets and try again!

- Laser alignment
- Coulomb explosion
- Electron diffraction from ions (bare & doped)

Electron diffraction from laser aligned ions doped in droplets

Conclusion

- Electron diffraction of neutral mol in helium droplets
- Doping of proteins into droplets
- Size matters
- The journey continues ...

The Fearless Crew

Postdoc

Fan Zhang Robert Kykyneshi

Engineer Yongsheng Liu

Ph. D Colin Harthcock (2015) Lei Chen (2016) Yunteng He (2017)

Collaborators at OSU:

Ryan Mehl (Unnatural Protein Facility) Lan Xue (Statistics) Special thanks Professor D. R. Herschbach Professor J. P. Toennies The droplet community

Funding

