Experimental Characterization of Low-temperature Surface Reactions for Astrochemistry

Serge A. Krasnokutski

Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena

Volatiles in Habitable Planets

- No volatiles condense in the habitable zone
- Volatiles have to be delivered later
- They are likely delivered from the distant areas
- The delivery of pristine IS dust by meteorites and comets is expected
- Both meteorites and comets contain large quantities of organic and biological molecules

Dark molecular clouds T ~ 10 K

•	. 11	2 atoms	3 atoms	4 atoms	5 atoms	6 atoms	7 atoms	8 atoms	9 atoms	10 atoms	11 atoms	12 atoms	>12		
												atoms	atoms	•	
		H ₂		C-C ₃ H	C ₅					CH_3C_5N			HC ₁₁ N		1.1
	5.6	AIC											60		646
		AICI	C S		I-C.H.								C +		
	1.00	CU.		C30	- C II			C 11				0211500113			
		чп	CH ₂ H ₂	C ₃ S	C-C ₃ H ₂	CH ₃ NC	CH ₃ CHO	С ₆ н ₂	HC ₇ N	CH ₃ CHCH ₂ O	· · ·	and the second			4
•		CH ⁺	HCN	C ₂ H ₂ *	H ₂ CCN	CH ₃ OH	CH ₃ NH ₂	CH ₂ OHCHO	C ₈ H	1. 1				3.18	
-	•	CN	HCO	NH ₃	CH ₄	CH ₃ SH	c-C ₂ H ₄ O	I-HC ₆ H	CH ₃ C(O)NH ₂		1 1 1				•
•••	1	CO	HCO ⁺	HCCN	HC ₃ N	HC ₃ NH⁺	H ₂ CCHOH	CH ₂ CHCHO	C ₈ H⁻		•	1 4			
Lev.		CO ⁺	HCS ⁺	HCNH ⁺	HC ₂ NC	HC ₂ CHO	C ₆ H⁻	CH ₂ CCHCN	C_3H_6			and the second			
		СР	HOC⁺	HNCO	НСООН	NH ₂ CHO	CH ₃ NCO	H ₂ NCH ₂ CN	CH ₃ CH ₂ SH				1.1	1	
		SiC	H ₂ C	HNCS	H ₂ CNH	C ₅ N	HC₅O	CH₃CHNH	CH ₃ NHCHO			1.1			•
1		HC	H ₂ S	HOCO ⁺	H ₂ C ₂ O	I-HC₄H		CH ₃ SiH ₃					· O.		
		KCI	HNC	H ₂ CO	H ₂ NCN	I-HC₄N									
		NH 104	HNO	H ₂ CN	HNC ₃	c-H ₂ C ₃ O							1.57		1
	1	NO.	MgCN	H ₂ CS	SiH ₄	H ₂ CCNH						1. 1.	24.15		1.15
100		NS	MgNC	H ₃ O ⁺	H₂COH⁺	C₅N [−]							1.8 15		
	¥ .	NaCl	N₂H*	c-SiC ₃	• C ₄ H ⁻	HNCHCN									St
	1	OH	N ₂ O	CH ₃	HC(O)CN	SiH ₃ CN							e care		
104	1.1	PN	NaCN	− C ₃ N−	⁺ HNCNH							1	es de		
		SO	OCS	PH ₃	CH ₃ O							1.1	. 2 .		49
		SO ⁺	SO ₂	HCNO	NH4 ⁺							See.			
		SIN	C-SIC ₂	HUCN	H ₂ NCO										100
		SIO	CO ₂	HSCN	NCCNH ⁺						1 1 10	200			4.00
• •		SiS	NH ₂	H ₂ O ₂	CH ₃ CI							1997 - B			4.
		CS	H_3^+	C ₃ H ⁺							2 . A A A		1. 1. 1.		
		HF	SiCN	HMgNC							1 A	10.00	1.		
• •		HD	AINC	HCCO							· .				
	•	FeO	SiNC										1.00		
		0 ₂	HCP								the set as				
- 24		CF*										1.1		1	
		AIO	H ₂ O							1. 1. 1.		6.4			
	-	OH+	KCN		1 1 1	1-1-6	2.10		1 · 1		1 (A)				
	110	CN-	FeCN		State .					1 mg 1	1.	0.0	-	14 - E	1.1

http://kida.obs.u-bordeaux1.fr http://www.physics.ohio-state.edu:80/~eric/research_files/osu_09_2008

Gas-phase reactions — 4401 Surface reactions — 532 Only 37 species were considered to react with C atoms on the surface of dust grains

Information on surface reactions is often adopted from the gas-phase studies.

$gC + gOH \rightarrow gCO + gH$ $gC + gOH \rightarrow CO + H$	No associative channel
$gC + gH_2 \rightarrow gCH_2$	E _a = 2500K, No low-temperature reaction
$gC + gC_2H_2 \rightarrow$ $gC + gNH_3 \rightarrow$	No surface reaction considered

Lack of solid experimental data on surface reactions

Surface reactions allow associative reactions A + B \rightarrow AB; (H + H \rightarrow H₂ is efficient only on the surface)

Surface reactions allow associative reactions A + B \rightarrow AB; (H + H \rightarrow H₂ is efficient only on the surface)

Surface reactions allow associative reactions $A + B \rightarrow AB$; $(H + H \rightarrow H_2 \text{ is efficient only on the surface})$

Helium droplet experimental setup

Experimental study of surface reactions

Liquid helium as a third body

Measuring sizes of He droplets

J. Phys. Chem. A, Vol. 114, No. 50, 2010

Measuring depletion caused by incorporation of one reactant

Ultra-low-temperature $C + H_2 \rightarrow HCH$ reaction

Energy levels of the C + H₂ reaction

Ultra-low-temperature $C + H_2 \rightarrow HCH$ reaction

$$m = P_{R_1} \frac{E_R}{5N_{He}}$$

 P_{R_1} is portion of He droplets doped with C atoms, E_R amount of released energy, and N_{He} is an initial size of He droplets

$$E_R = K_{cal}m$$

 K_{cal} is calibration constant. Based on the energy release in C + H₂ reaction (26844 cm⁻¹).

 $K_{cal} = 813454 \ cm^{-1}$

Therefore, energy released in $C + C_2H_2$ reaction to be **18709 cm⁻¹**

T. Henning, and S. Krasnokutski
Nat. Astron. (2019)
doi: 10.1038/s41550-019-0729-8

Energy levels of the $C + C_2H_2$ reaction

J. Takahashi and K. Yamashita, J. Chem. Phys. 104, 6613 (1996)

$C + O_2 \rightarrow CO + O, C + O_2 \rightarrow CO_2$ reactions

Energy levels diagram of the C + O₂ reaction

On platinum crystal: $C + O_2 \rightarrow CO + O \rightarrow CO_2$ Walker & King JCP **112** (2000) 1937

Glycine formation pathway

$C + H_2 \rightarrow HCH$

Potential energy surface of HCH + CO_2 + NH_3 reaction

Triplet channel

Singlet channel

1.4

1.6

1.8

2

2.2

SC1

2.4

Glycine formation pathway

$C + H_2 \rightarrow HCH$

Energy levels diagram of the C + NH₃ reaction

APJ, 812:106, 2015

Energy levels diagram of the C + CO₂ reaction

Negative slope of C + Ar reaction

Origin of negative slope

Negative slope of C + Ar reaction

Conclusions

- The experimental technique, which can be used to measure the energy released in reactions of a single pair of reactants was developed.
- These data can be directly compared with the results of quantum chemical computations leading to unequivocal conclusions regarding the reaction pathways, the presence of energy barriers, and the final reaction products.
- The ground reactions $C + H_2 \rightarrow HCH$ and $C + C_2H_2 \rightarrow C_3H_2$ are barrierless, and therefore should be considered in the modeling of the chemistry of the ISM.
- The barrierless formation of CHNH₂, which is one of the key molecules of Strecker type synthesis, was found, suggesting an efficient formation of prebiotic molecules during condensation of C atoms on the surfaces of dust grains.
- After almost a hundred years of unsuccessful trials, we finally managed to detect an elusive molecule ethylenedione (C₂O₂).