Two-dimensional coherent spectroscopy of doped Helium nanodroplets

Frank Stienkemeier

- Introduction
 - Femtosecond experiments
 - Coherent multidimensional spectroscopy
- 2d-coherent spectroscopy of doped helium nanodroplets
 - Wave packet dynamics of Rb dimers
 - Oynamics of dopant molecules with the helium environment
- Conclusion

Time-dependance of an action signal a)

- b) Wave packet dynamics (Tannor-Kosloff-Rice)
- Wave packet interferometry (Brumer-Shapiro) **C**)
- Multidimensional coherent spectroscopy d)

Institute of Physics University of Freiburg

Simulations: M. Barranco et al. (Uni Barcelona)

J. v. Vangerow et al., J. Phys. Chem. A **118**, 6604 (2014)

UNI FREIBURG

Pump probe Rb⁺ Velocity Map Imaging

Institute of Physics

University of Freiburg

- Time-dependance of an action signal a)
- b) Wave packet dynamics (Tannor-Kosloff-Rice)
- Wave packet interferometry (Brumer-Shapiro) **C**)
- Multidimensional coherent spectroscopy d)

Institute of Physics University of Freiburg

- Time-dependance of an action signal a)
- Wave packet dynamics (Tannor-Kosloff-Rice) b)
- Wave packet interferometry (Brumer-Shapiro) **C**)
- Multidimensional coherent spectroscopy d)

Institute of Physics University of Freiburg

Quantum interferences of K atoms – **nJ** pulse energies

Multi-Path Interference

 $\Delta E_{so} = 57.72 \text{ cm}^{-1}$

Institute of Physics University of Freiburg

L. Bruder, M. Mudrich, F. Stienkemeier, Phys. Chem. Chem. Phys. 17, 23877 (2015)

Institute of Physics

Comparison of phase modulation technique to conventional WPI

Institute of Physics University of Freiburg

- Time-dependance of an action signal a)
- b) Wave packet dynamics (Tannor-Kosloff-Rice)
- Wave packet interferometry (Brumer-Shapiro) **C**)
- Multidimensional coherent spectroscopy **d**)

Institute of Physics University of Freiburg

2-dimensional spectroscopy

Institute of Physics University of Freiburg

2-D spectroscopy at dillute samples: Phase matching – Phase cycling

Institute of Physics

University of Freiburg

FREIBURG

Four-wave mixing:

- Advanced geometry of the optical setup
- Macroscopic ensemble effect, no option for small Ο particle numbers
- Low sensitivity, photon detection Ο

Phase cycling:

- Detection of population states (charged particles, Ο photons, absorption, ...)
- High sensitivity and phase stability Ο
- Collinear optical pulse sequence (still advanced Ο optical setup)

Phase-modulated 2D electronic spectroscopy

Institute of Physics

University of Freiburg

Optical setup

Institute of Physics University of Freiburg

5

Droplet beam apparatus

Institute of Physics University of Freiburg

2-dimensional electronic spectroscopy at molecular beam targets

Institute of Physics

University of Freiburg

FREIBURG

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, F. Stienkemeier, Nat. Comm. 9, 4823 (2018)

2-dimensional electronic spectroscopy at molecular beam targets

Institute of Physics

University of Freiburg

FREIBURG

SE	Stimulated emission	
ESA	Excited state absorption	
GSB	Ground state bleach	
СР	Cross peak	—

pump

Comparison with fluorescence **absorption** spectra

Bruder et al., Nat. Comm. 9, 4823 (2018) Allard et al., J. Phys. B: At. Mol. Opt. Phys. **39**, 1169 (2006) Nagl et al., Phys. Rev. Lett. 100, (2008)

Comparison with fluorescence emission spectra

Bruder et al., Nat. Comm. 9, 4823 (2018) Allard et al., J. Phys. B: At. Mol. Opt. Phys. **39**, 1169 (2006) Nagl et al., Phys. Rev. Lett. 100, (2008)

Institute of Physics

Comparison with fluorescence emission spectra

L. Bruder, U. Bangert, M. Binz, D. Uhl, R. Vexiau, N. Bouloufa-Maafa, O. Dulieu, F. Stienkemeier, Nat. Comm. 9, 4823 (2018)

Institute of Physics

University of Freiburg

Institute of Physics University of Freiburg

UNI

Mass-resolved detection

Institute of Physics University of Freiburg

1250

14.0

Institute of Physics

- \rightarrow Unprecedented spectro-temporal resolution
- \rightarrow "Complete" information on energies and the dynamics
- Rb₂: Dynamics of wave packet propagation and relaxation into lower states
- Rb₃: Dynamics of interaction with the helium surface

Outlook

- \rightarrow Application to organic excitation and charge transfer complexes to unravel complex dynamics
- \rightarrow Phase modulation enables efficient and selective detection of higher order processes
 - Many-body effects of interacting ensembles
 - HHG light sources: coherent multidimensional schemes are possible without direct **XUV pulse manipulation**

BURG

Acknowledgements

European DFG erc Research Council Bundesministerium IRTG CoCo für Bildung und Forschung

Katrin Dulitz Markus Debatin Jiwen Guan Ulrich Bangert Marcel Binz Matthias Bohlen Friedemann Landmesser Moritz Michelbach **Rupert Michiels Nicolas Rendler Dominik Schomas** Audrey Scognamiglio Tobias Sixt Daniel Uhl Andreas Wituschek Andreas Göppentin Lars-Stephan Klein Jakob Krull Christian Medina Niels Sorgenfrei

Institute of Physics University of Freiburg

FREIBURG

Theory support(2D experiments): Alexander Eisfeld (Dresden) Olivier Dulieu (Orsay) Andreas Hauser (Graz)

More details on phase-modulated coherent spectroscopy

See Posters:

Ulrich Bangert Two-dimensional electronic spectroscopy of Rb₃ in helium nanodroplet isolation

Daniel Uhl Photoelectron two-dimensional coherent spectroscopy

Marcel Binz Peak shape modulations in two-dimensional electronic spectroscopy caused by intense laser pulses

Friedemann Landmesser

Two-dimensional electronic spectroscopy of isolated, cold molecular nanosystems

L. Bruder, et al., Nat. Comm. 9, 4823 (2018)

A. Wituschek, et al., J. Opt. Soc. Am. B 44, 943 (2019)

L. Bruder, et al., Phys. Chem. Chem. Phys. 21, 2276 (2019)

Review article: L. Bruder, U. Bangert, M. Binz, D. Uhl, and F. Stienkemeier, arXiv:1905.06129

BURG