Spectroscopy of Mass/Charge Selected Cations and Anions in Helium Droplets

Daniel Thomas, Eike Mucha, Gerard Meijer and Gert von Helden

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin

Outline

IR Spectroscopy in He Nanodroplets

m/z selected cations and anions

Fluoride Chemistry

F-, and its reactivity towards CO₂ and H₂O

Glycosyl Cations

Characterisation of an important reaction intermediate

Pickup by liquid helium droplets

Pick-up of neutral species from a gas cell

Pick-up of ions from a linear ion trap

Liquid helium droplet setup

The FHI FEL

Specifications

The time structure of IR output given by electrons: micro-pulses and macro-pulses

IR output:

- macro-pulse length > 10 µs
- > 100 mJ / macro-pulse
- 10 20 µJ / micro-pulse
- micro-pulse length 0.3 >5 ps
- FT-limited bandwidth: 0.3 5% of central frequency

Multiple photon excitation in a macropuls

Protonated Water Clusters

C. H. Duong et al., J. Phys. Chem. Lett. 2017, 8, 3782-3789.

PRODUCTION OF FLUOROFORMATE

HALIDE-CO₂ COMPLEXES

J. M. Weber, H. Schneider, J. Chem. Phys. 2004, 120, 10056-10061.

IR Spectroscopy of Fluoroformate

D. A. Thomas, et al., J. Phys. Chem. Lett. 2018, 9, 2305-2310. 11

IR Spectroscopy of Fluoroformate

PRODUCTION OF FLUOROFORMATE

IR Spectroscopy of Fluoroformate

IR SPECTROSCOPY OF $FCO_2^- + 18$

REACTION COORDINATE OF FCO_2^- + H_2O

D. A. Thomas, et al., J. Am. Chem. Soc. 2019, 141, 5815-5823.

IR SPECTROSCOPY OF $FCO_2^- + 18$

Probing the Structure of Glycosyl Cations

Stereoselective glycosylation reactions:

Probing the Structure of Glycosyl Cations

E. Mucha, et al., Nature Comm. 2018, 9, 4174.

Probing the Structure of Glycosyl Cations

- Theory provides low energy structure candidates
- Good agreement between theory and experiment
- Ions adopt dioxolenium structures
- Various ring puckers found

Highly resolved IR spectra

Shock Freezing in Helium Nanodroplets

C. M. Leavitt et al., J. Phys. Chem. A 2014, 118, 9692-9700.

D. S. Skvortsov, A. F. Vilesov, J. Chem. Phys. 2009, 130, 151101.

Thermochemical Measurements by HENDI IR

Thermochemical Measurements by HENDI IR

Proof of Principle – Dinucleotide dTpdA

Proof of Principle – Dinucleotide dTpdA

Acknowledgements

MP: Daniel Thomas Eike Mucha Mateusz Marianski Gerard Meijer

FU Berlin / FHI: Kevin Pagel

FEL Team: Wieland Schöllkopf Sandy Gewinner

Thank you!