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A crash-course on equilibration and thermalization 
in quantum many-body systems
With a focus on rigorous results

DISCLAIMER: I will only give a small peak into the field. What comes will be 
incomplete and biased.
In particular, I will leave out typicality approaches to equilibration and 
thermalization (see, e.g., works by Reimann, Gemmer and Steinigeweg groups). 

Other people at the conference that know more about specific aspects of
the problem! If you’re interested in the topic, for example, also talk to:

... and the speakers of the 
Wednesday morning session!

Markus Müller Luis Pedro García-Pintos



  

Statistical ensembles 

In (quantum) statistical mechanics, we ascribe a statistical ensemble
to the state of a system obtain predictions. For example, Gibbs-state:

Depending on situation, different justifications can be given, e.g.:
● Complete passivity 

Essentially a thermodynamics argument. 
Don’t we want to derive thermo from quantum theory?

● Jaynes’ Maximum Entropy principle 
Lack of knowledge, seems “subjective”.

● Typicality 
(almost all quantum states in an energy-shell resemble a
Gibbs state for physically relevant observables)
But why aren’t the physically relevant initial states in the
set of measure zero for which it doesn’t apply?



  

Statistical ensembles 

In (quantum) statistical mechanics, we ascribe a statistical ensemble
to the state of a system obtain predictions. For example, Gibbs-state:

Topic today: Can we maybe derive the dynamical emergence of 
statistical ensembles in quantum mechanics from reasonable assumptions?

Need to be able to show three things:

1) System reaches a stationary state in the first place. 
(Equilibration)
 

2) Stationary state well described by thermal ensemble for 
physically relevant observables. (Thermalization)
 

3) Equilibration happens in a reasonable time.



  

Some connections to other fields

Condensed matter physics
Understanding out of 
equilibrium dynamics.
Understanding possible phases
of matter.

Quantum gravity (holographic duality)
(Eternal) black holes described by thermal 
state in dual CFT.
How do thermal states arise?
How does information get scrambled?

Quantum thermodynamics
Understanding strong coupling corrections 
to thermodynamic bounds.
Understanding when thermal states are 
applicable.

Quantum simulation
Simulating dynamics of complex
Quantum systems in experiments.



  

1. Equilibration

Basic questions:
● How does it happen (if it happens)?
● Does it actually happen (even in infinite time)?  
● How long does it take?

Reviews:
● Nature Physics 11, 124 (2015) Eisert, Friesdorf, Gogolin
● Advances in Physics 65, 3 (2016) D’Alessio, Kafri, Polkovnikov, Rigol
● Rep. Prog. Phys. 79, 056001 (2016) Gogolin, Eisert

For pedagogical explanation, see for example:
● H.W., T. R. de Oliveira, A. J. Short, J. Eisert, in "Thermodynamics in the quantum regime", F. 

Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso (eds.) (Springer, Berlin, 2018)
● H.W., M. Goihl, C. Krumnow, J. Eisert, arXiv:1704.06291
● T. R. de Oliveira, C. Charalambous, D. Jonathan, M. Lewenstein, A. Riera, 

New Journal of Physics 20, 033032 (2018)
 

See, also e.g., work by the Short group (Bristol), Reimann group (Bielefeld), Gemmer group 
(Osnabrück), Eisert group (Berlin), Abanin, Calabrese, Cardy, Caux, Essler, Farelly, Gogolin, Kastner, 
Masanes, Müller, Osborne, Popescu, Winter and many more

Big open problem!

Will only briefly 
touch it at the end.

Talk to Luis Pedro 
García-Pintos!



  

If system equilibrates, then the stationary state is necessarily well 
approximated by the time-averaged state:

Is it true that (after sufficiently long time)                                                   for 
all observables in      ?

Also consider a set of “physically relevant” observables       .

Basics

Consider a finite quantum system evolving under a Hamiltonian H:

Probability distribution of energy

For pure initial states



  

Also consider a set of “physically relevant” observables       .
 

Basics

Consider a finite quantum system evolving under a Hamiltonian H:

Counter-examples: 
● Single spin in a magnetic field that keeps rotating.  
● Harmonic oscillator in a coherent state, oscillating back and forth.

Recurrence time: Unitary dynamics is reversible and state-space compact. 
Therefore, for any               there exists a time T such that

In general: No!

Is it true that (after sufficiently long time)                                                   for 
all observables in      ?



  

Also consider a set of “physically relevant” observables       .
 

Basics

Consider a finite quantum system evolving under a Hamiltonian H:

Counter-examples: 
● Single spin in a magnetic field that keeps rotating.  
● Harmonic oscillator in a coherent state, oscillating back and forth.

Recurrence time in finite-dimensional systems: 
Unitary dynamics is reversible and state-space compact. 
Therefore, for any               there exists a time T such that

Not the kind of systems, we usually observe to equilibrate: What about large, interacting systems?

But T ~ exp(exp(N)), hence irrelevant (just like in classical mechanics!). 
Sufficient if system is close to a stationary value for most times. 

In general: No!

Is it true that (after sufficiently long time)                                                   for 
all observables in      ?



  

Also consider a set of “physically relevant” observables       .
 

Do the expectation values of these observables become stationary?  
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Consider a quantum system evolving under a Hamiltonian H:
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Also consider a set of “physically relevant” observables       .
 

Do the expectation values of these observables become stationary?  

Consider a quantum system evolving under a Hamiltonian H:
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Also consider a set of “physically relevant” observables       .
 

Do the expectation values of these observables become stationary?  

Consider a quantum system evolving under a Hamiltonian H:



  

Basics

Also consider a set of “physically relevant” observables       .
 

Do the expectation values of these observables become stationary?  

Consider a quantum system evolving under a Hamiltonian H:

Depends on Hamiltonian, initial state and set of observables!

Hamiltonian

Initial state Observable



  

Equilibration: How does it happen? Intuition: Dephasing.

Can decompose time-dependent expectation value of an observable in 
energy-eigenbasis:

Collection of points in the complex plane moving rotating with angular
velocities         (“energy gaps”) on circles of radius          .



  

Equilibration: How does it happen? Intuition: Dephasing.

Intuitively, for good equilibration, want:
1) Many points: large Hilbert-space dimension
2) Moving with different velocities (a variety of energy-gaps)
3) None of them should be on a circle with very large radius 

(weight evenly distributed)
  

It’s a very special situation not to be equilibrated already!



  

● Maximum degeneracy of energy gaps

 

● Probability distribution of energy:

 

● 2nd Rényi entropy:

● Infinite time-average:

Equilibration: Does it happen in infinite time? - A theorem

Theorem: For any finite-dimensional system, any observable and any 
initial state:

Here: 

 P. Reimann, Phys. Rev. Lett. 101, 190403 (2008), arXiv:0810.3092 .
 A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012), arXiv:1110.5759 .

Good equilibration

Few degenerate gaps
(“generically true in 
interacting systems”)

Energy distribution 
spread evenly over 
many different 
energy-levels

if

+

To show this, need 
additional assumptions.



  

Equilibration: When is                 big?

From now on: Consider many-body systems modelled by interacting spins on a lattice

Interactions k-local:

Hilbert-space:

Hamiltonian

if

Physically relevant observables:
  

i) local observables,           ii) extensive observables, for example:

Physically relevant initial states: States with finite correlation length:

Examples: Product states, Gibbs states above critical temperature, 
    Ground states of gapped Hamiltonians, generic matrix product states   



  

Equilibration: When is                 big? - A theorem

If state has finite correlation length, energy disitribution of a local 
Hamiltonian is roughly Gaussian.

Typically,                                 (unless eigenstate). 

Energy

Probability density



  

Equilibration: When is                 big? - A theorem

T. Farrelly, F. G. S. L. Brandao, M. Cramer, Phys. Rev. Lett. 118, 140601 (2017) 

If state has finite correlation length, energy disitribution of a local 
Hamiltonian is roughly Gaussian.

Typically,                                 (unless eigenstate). 

System has finite 
correlation length and is 
not in eigenstate of 
Hamiltonian.

Application (Stability of non-critical thermal states): Suppose system 
is thermal initially with finite correlation length. Any local perturbation 
can change the entropy only by an amount O(1). Then system will 
equilibrate again. In fact will thermalize “on average” (see paper).

Equilibration (in infinite 
time) in case of few 
degenerate energy gaps.

Theorem: If a state has finite correlation length and the Hamiltonian is 
k-local, then

Hence: 



  

Equilibration: When is                 big? - A theorem

T. Farrelly, F. G. S. L. Brandao, M. Cramer, Phys. Rev. Lett. 118, 140601 (2017) 

If state has finite correlation length, energy disitribution of a local 
Hamiltonian is roughly Gaussian.

Typically,                                 (unless eigenstate). 

Theorem: If a state has finite correlation length and the Hamiltonian is 
k-local, then

Hence: 

System has finite 
correlation length and is 
not in eigenstate of 
Hamiltonian.

Equilibration (in infinite 
time) in case of few 
degenerate energy gaps.

Remark: The Theorem only gives a vanishing entropy density in thermodynamic limit:
              



  

2. Thermalization

Basic question:
Assuming a system equilibrates, when does it also thermalize?

Reviews:
● Nature Physics 11, 124 (2015) Eisert, Friesdorf, Gogolin
● Advances in Physics 65, 3 (2016) D’Alessio, Kafri, Polkovnikov, Rigol
● Rep. Prog. Phys. 79, 056001 (2016) Gogolin, Eisert

Some key papers:
● M. Srednicki, Phys. Rev. E 50 (1994)
● M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008)
● S. Popescu, A. J. Short, and A. Winter, Nature Phys. 2 (2006)
● M. P. Mueller, E. Adlam, L. Masanes, N. Wiebe, Communications in Mathematical Physics 340 2 

(2015)
● T. Farrelly, F. G. S. L. Brandao, M. Cramer, Phys. Rev. Lett. 118, 140601 (2017) 

 



  

Thermalization: Basics 

Assume many-body system equilibrates from some initial state for local observables. 
We say it thermalizes, if also (for local observables)

Typically require that the error decreases with increasing system-size.

Caution, in strongly coupled systems, reduced state of global thermal state:



  

Thermalization: Basics 

Assume many-body system equilibrates from some initial state for local observables. 
We say it thermalizes, if also (for local observables)

Typically require that the error decreases with increasing system-size.

Caution, in strongly coupled systems, reduced state of global thermal state:

M. Perarnau-Llobet, H. Wilming, A. Riera, R. Gallego, and J. Eisert, 
Phys. Rev. Lett. 120, 120602 (2018)

Average energy of central oscillator over time in Caldeira-
Leggett model with ohmic spectral density

Unitary time-evolution

Local thermal state at environment temperature

Reduced state of global thermal state

Local thermal state at environment temperature



  

Thermalization: Basics 

Assume many-body system equilibrates from some initial state for local observables. 
We say it thermalizes, if also (for local observables)

Typically require that the error decreases with increasing system-size.

Reminder (Gibbs’ principle): Given a state and Hamiltonian of a finite system. Let
 

                                        :  Expected energy density for a given state and Hamiltonian

                                                                     : von Neumann entropy density of state

The Gibbs-state at inverse temperature 1/T is the unique state that minimizes the
free energy density

Expected energy unchanged by evolution, but entropy of equilibrium state can be much 
larger than initial value. Does thermalization follow as long as entropy density of 
equilibrium state large enough? 



  

Thermalization: An informal theorem 

Theorem (highly informal): Consider translationally invariant 
systems  of increasing size N with non-degenerate spectra. 
Further consider a sequence of initial states with the following 
properties:

1) The energy density of the states converges and there is a 
unique thermal state at the corresponding temperature in the 
thermodynamic limit (i.e., above phase transition).
 

2) The entropy density of the time-averaged states converges to 
the thermal one.

Then local observables in equilibrium are described to arbitrary 
accuracy (with increasing N) by the thermal Gibbs state in the 
thermodynamic limit. 

M. P. Mueller, E. Adlam, L. Masanes, N. Wiebe, 
Communications in Mathematical Physics 340 2 (2015)

T. Farrelly, F. G. S. L. Brandao, M. Cramer, 
Phys. Rev. Lett. 118, 140601 (2017)

Roughly: Under weak 
assumptions, if the energy 
distribution of initial state 
has large enough entropy, 
system will locally 
thermalize.

Need to be able to argue 
that the energy distribution 
for reasonable initial states 
has maximum entropy 
density! 

A new ingredient:
Entanglement in energy 
eigenstates.



  

Interlude: Entanglement in many-body systems

A

Consider an energy eigenstate             of a 
many-body system. 

What’s the entropy of the reduced density 
matrix on a large region A?

A random pure state fulfills:

General believe in “ergodic systems”:

At very low energies (u=0 in thermodynamic limit):

At high energies (u>0 in thermodynamic limit):

“Area Law”

“Volume Law”(In this regime, properties of many-body systems 
are often well-described by random matrices.)



  

Entanglement-ergodicity

Informal definition: Entanglement-ergodicity

Call a sequence of spin-lattice systems of increasing system size N entanglement-
ergodic if for every energy eigenstate |E> with positive energy density the 2nd Renyi 
entanglement entropy of some finite fraction A(E) of the lattice is extensive:

g is a sufficiently regular function of the energy density (e.g., Lipschitz)

H.W., M. Goihl, I. Roth, J. Eisert, Phys. Rev. Lett. 123, 200604 (2019)



  

Entanglement-ergodicity

Informal definition: Entanglement-ergodicity

Call a sequence of systems of increasing system size N entanglement-ergodic if for 
each energy eigenstate with positive energy density the 2nd Renyi entanglement 
entropy of some finite fraction of the lattice is extensive.

● Intuitively: every energy eigenstate with positive energy density 
fulfills a weak volume law. 

● Very forgiving: considered subsystem need not be connected.
Even generic matrix product states are expected fulfill such a 
weak volume law! (Important: MBL systems equilibrate, but don’t 
thermalize)

● Volume law for von Neumann entropy not enough
(counter-example).

● Plausibly implied by Eigenstate Thermalization Hypothesis (ETH)
(open problem, comes later)

● Equivalent definition for any Renyi entropy with  > 1.α

H.W., M. Goihl, I. Roth, J. Eisert, Phys. Rev. Lett. 123, 200604 (2019)



  

Entanglement-ergodicity: Implications

Informal Theorem

In an entanglement-ergodic system every initial pure product state with extensive 
energy has extensive (Renyi) entropy in the energy distribution (for large enough N):

where k>0 is a constant. Hence, entropy density is positive in equilibrium.

Corollary

In an entanglement-ergodic system with few degenerate energy-gaps, every pure 
initial product state with extensive energy equilibrates to exponential precision: 
For any observable A,

H.W., M. Goihl, I. Roth, J. Eisert, Phys. Rev. Lett. 123, 200604 (2019)

Open problem: Prove that k is large enough to obtain thermalization under 
                              suitable assumptions.



  

Entanglement-ergodicity: Proof sketch

H.W., M. Goihl, I. Roth, J. Eisert, Phys. Rev. Lett. 123, 200604 (2019)

Energy

Probability density

● Outside window: Energy distribution ~ Gaussian, hence total probability outside of window 
                                 exponentially small

● Inside window: Use extensive entanglement entropy to show that overlap of energy eigenstates
                               with any product state is exponentially small. 



  

Are the assumptions necessary? - Quantum many-body scars

Two crucial assumptions: 1) Few degenerate energy gaps

2) Entanglement in energy-eigenstates high
(to get high entropy of energy distribution)

In the last two years, very interesting development. There exist k-local, 
interacting, “non-integrable” Hamiltonians with perfect revival of initial 
product state:

and
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See, for example, Choi et al. Phys. Rev. Lett. 122, 220603 (2019)



  

What goes “wrong” in these models? It is found in the particular 
models that there exist O(N) eigenstates            such that:

Are the assumptions necessary? - Quantum many-body scars

Two crucial assumptions: 1) Few degenerate energy gaps

2) Entanglement in energy-eigenstates high
(to get high entropy of energy distribution)

In the last two years, very interesting development. There exist k-local, 
interacting, “non-integrable” Hamiltonians with perfect revival of initial 
product state:

and

1)  

2)       The energy eigenstates have very little entanglement, 
       even though energy density is positive!

N degenerate energy gaps, related to an “emergent 
SU(2) symmetry”
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See, for example, Choi et al. Phys. Rev. Lett. 122, 220603 (2019)

“Perfect quantum 
many-body scars”



  

Consider any k-local Hamiltonian and assume there exists an initial state such that

Then there exist at least                    many energy eigenstates with energies in an 
equally-spaced set of energies and each of them fulfills: 

Quantum many-body scars: A theorem

and

Informal Theorem: “Perfect revivals imply quantum many-body scars”

A. M. Alhambra, H.W., arXiv: 1911.05637

● Assumption on state can be relaxed to “area law + finite correlation length”

● Energy-spacing ~ 1/τ.

● In case of imperfect revivals: Scar-states which are approximate 
eigenstates. 



  

The eigenstate thermalization hypothesis

So far: wanted to show thermalization using Gibbs’ principle

Imagine instead that every energy eigenstate at high energy locally looks thermal:

with        s.t.

If:
1) System equilibrates,
2) Probability distribution of energy peaked at energy density u

(for example, state with finite correlation length),

Then:

“Eigenstate Thermalization Hypothesis (ETH)”
(Different formulations exist.)

M. Srednicki, Phys. Rev. E 50 (1994)
M. Rigol, V. Dunjko, and M. Olshanii, Nature 452 (2008)
D’Alessio, Kafri, Polkovnikov, Rigol, Advances in Physics 65, 3 (2016) 

with        s.t.



  

The eigenstate thermalization hypothesis: pros and cons.

Pro Contra

Amazingly elegant explanation of
Thermalization!

Need a good explanation why ETH should hold.

Fair amount of numerical evidence 
in favor of ETH for “non-integrable”, 
interacting systems.

No generally accepted definition of “non-
integrable” systems in quantum theory.
Also: “Counter-examples” known 
(many-body localization, many-body scars)  

Many different variations of ETH available.
Not precisely formulated for which 
observables it is supposed to hold.
Makes it difficult to prove or disprove. 

Has led to many interesting insights 
and observations.

Interesting open problem: Prove that a suitable formulation of ETH implies 
    entanglement-ergodicity. If true, ETH would already imply
    equilibration.



  

3. How long does equilibration take?

Short, pedagogical review on known results (includes Refs. below):
H.W., T. R. de Oliveira, A. J. Short, J. Eisert, in "Thermodynamics in the quantum regime",  
(Springer, Berlin, 2018), arXiv:1805.06422  

Some key papers:
M. Cramer, C. M. Dawson, J. Eisert, and T. J. Osborne, Phys. Rev. Lett. 100, 030602 (2008).
A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012)
Sheldon Goldstein, Takashi Hara, and Hal Tasaki Phys. Rev. Lett. 111, 140401 (2013)
L. P. Garcı́a-Pintos, N. Linden, A. S. L. Malabarba, A. J. Short, and A. Winter, Phys. Rev. X 7, 031027 (2017).
P. Reimann, Nature Comm. 7, 10821 (2016)



  

Equilibration times: A very brief overview

● Numerically and empricially, one usually finds that equilibration happens relatively quickly.
(In times at most polynomial in the system size. This is required, due to finite-group velocity,
i.e., Lieb-Robinson bounds.)

● In non-interacting fermionic and bosonic systems, equilibration times can be proven. Initially
homogeneous states typically equilibrate locally according to power-law.

● Interacting systems: Extremely difficult problem to get rigorous and meaningful results.

 

Length L

T ~ O(L)

T ~ O(1)



  

Equilibration times: A general result

General bound:

 

Problem: In many-body systems,                              . Thus, T ~ exp(N): much smaller than recurrence 
time, but still unrealistically big for physical observables.  

Minimal difference between energy gaps.

A more promising bound is shown in L. P. Garcı́a-Pintos, N. Linden, A. S. L. Malabarba, A. J. 
Short, and A. Winter, Phys. Rev. X 7, 031027 (2017)  under additional assumptions. 
These assumptions seem to be natural, but are difficult to explicitly show to hold.

A. J. Short and T. C. Farrelly, New J. Phys. 14, 013063 (2012), arXiv:1110.5759 .

Showing reasonable equilibration times from physically clear and
sensible assumptions for interacting systems is still a major open problem.



  

Summary

Equilibration means that

for “physically relevant” observables and most times.

Thermalization means that additionally    . 

Infinite time-average

● Equilibration for local observables generic in infinite time if
few degenerate energy gaps present in system.
Large amounts of entanglement in energy eigenstates beneficial.

● Thermalization if entropy density large enough, or ETH holds.
(Both difficult to prove: Big open problem!)

● Equilibration times usually expected to be short, but notoriously 
difficult to prove in general. Big open problem!
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