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Recall thermodynamics at fixed background temperature T.

Folklore: spontaneous processes have
AF <0 (2nd law),

where F=U —-TS.

If this is negative, then we can extract |[AF|
of work from the system.

But this is a statement on average, since “work” is
a random variable.
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Standard view: thermodynamic limit

Work is a random variable (for fixed process):

Prob(\W) Prob(W)

AF

small # of particles n particles

Extractable work “is” (optimally) AF :
only true in the thermodynamic limit n — oo
when fluctuations become irrelevant (law of large numbers).
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Standard view: thermodynamic limit

But what do we do for “small” (quantum?) or strongly
correlated systems? Work = its fluctuations —reliability?

Landauer

Free energy F determines possibility of
state transitions only in the thermodynamic limit.
For single systems, resource theory formulation
gives additional constraints (and
solves Bennett’s puzzle). More soon.

But: Bennett’s [ . ~.0.....0 H(l i E)
ut: Bennett’s | 5. 5,0, (NN
puzzle:

has AS > 0= AF <0 but should be impossible
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Question: Which transitions (work extraction etc.) are
possible via thermal operations?
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Def.: A thermal operation T is a map of the form

T(pa) =Trp {UAB (PA ®VB) ULB]
where [Uap, Ha + Hp| = 0.

Theorem (Horodecki, Oppenheim, Nat. Comm. 4 (2013)):

For block-diagonal states, pa — p)4 is possible via
some thermal operation iff pa thermo-majorizes p'y.

A
1 =p1+p2+p3
pP1 + P2
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Work extraction: o4 ® |g){g|lw — o4 ® |e){e|lw

N — 1A

Wanted: largest possible A over all possible /4
such that the LHS thermo-majorizes the RHS.

Easy to see: o'y = va (thermal state) gives largest A.
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Work extraction and work of formation

Work extraction: o4 ® |9)(glw — 74 ® |e){e|w
B A

Wanted: largest possible A such that LHS thermo-maj. RHS.

LHS: Must lie everwhere above that curve (note: concave).

Fo(oa) > F(va) + A
Extractable work: Fy(oa) + kT log Z 4.

Work cost: F(0a) + kpTlog Z 4
Foo(oa) + F(ya) =
kpTlogmin{A:o4 < Aya}.




Work extraction and work of formation

Work extraction: o4 ® |9)(glw — 74 ® |e){e|w
B A

Wanted: largest possible A such that LHS thermo-maj. RHS.

LHS: Must lie everwhere above that curve (note: concave).

Fo(oa) > F(va) + A
Extractable work: Fy(oa) + kT log Z 4.

Work cost: F(0a) + kpTlog Z 4

Fundamental irreversibility: < F <« F.




General state transitions — with a catalyst

Allow for additional system C that is involved but doesn’t change.

Brandao et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Thermal reservoir
T >HR
Catalyst Catalyst

|
Energy Preserving Process

When is a transition
ps — Pl possible?




General state transitions — with a catalyst

Allow for additional system C that is involved but doesn’t change.

Brandao et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Therm?’ll_rliservoir TR — exp(—kB THR)/Z

Catalyst Catalyst

Energy Preserving Processr [USRC, HS —|— HR —|— HC] _ O
S o

When is a transition
ps — Pl possible?




General state transitions — with a catalyst

Allow for additional system C that is involved but doesn’t change.

Brandao et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Therm?’ll_rliservoir TR — exp(—kB THR)/Z

Catalyst | Catalyst

""J-Energy Preserving Process [USRC, HS —I_ HR —I— HC] — O
S o ’

When is a transition
ps — Pl possible?




General state transitions — with a catalyst

Allow for additional system C that is involved but doesn’t change.

Brandao et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Therm?’ll_rliservoir TR — exp(—kB THR)/Z

Catalyst Catalyst

Energy Preserving Processr [USRC, HS —|— HR —|— HC] _ O
S o

When is a transition
/ :
pPs — Ps possible?
(Blockdiagonal states!)




General state transitions — with a catalyst

Allow for additional system C that is involved but doesn’t change.

Branddo et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).

Therm?,ll_rliservoir TR — exp(—kB THR)/Z

_ Catalyst Catalyst

Energy Preserving Process [USRC, HS —|— HR —|— HC’] _ O
S A

o - When is a transition
4 ' 0 / .
@ ps — Ps possible?
System T~ ”'/éystem

(Blockdiagonal states!)

Irp {USRC (.@ oc X TR) Uch} — ,Oig X oC.

Theorem: Possible if and only if F,,(ps) > F.(pg) forall a > 0.
“Second laws” of thermodynamics. Note: F,_; = F.




General state transitions — with a catalyst

Theorem: Possible if and only if Fi,(ps) > F,(ps) forall a > 0.
“Second laws” of thermodynamics. Note: F,,_; = F.




General state transitions — with a catalyst

Theorem: Possible if and only if Fi,(ps) > F,(ps) forall a > 0.
“Second laws” of thermodynamics. Note: F,,_; = F.

This solves Bennett’s puzzle:

1 1 € € €
Ll o) (eSS )
(272707 7O> H( €7N7N7 7N

has AF = AF; <0 but should be impossible.




General state transitions — with a catalyst

Theorem: Possible if and only if Fi,(ps) > F,(ps) forall a > 0.
“Second laws” of thermodynamics. Note: F,,_; = F.

This solves Bennett’s puzzle:

1 1 € € €
Ll o) (eSS )
(272707 7O> H( €7N7N7 7N

has AF = AF; <0 but should be impossible.

AF,

1
. e=——, N =10,
100

Some AF, > 0 hence indeed impossible.
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How does the thermodynamic limit enter?

Theorem: Possible if and only if F,,(ps) > F.(pg) forall a > 0.
“Second laws” of thermodynamics. Note: F,,_; = F.

Brandao et al., Phys. Rev. Lett. 111, 250404 (2013):

Allowing small errors ¢, we have

1 T ©,@)
—FE)(p®™) =37 F(p).
T

= For large numbers n of weakly interacting particles,
it is only the free energy F=U-TS that remains relevant.

(Rates of) work cost and extractable work become F.
Reversibility Is restored in the thermodynamic limit!
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MM, Correlating Thermal Machines and the Second Law
at the Nanoscale, Phys. Rev. X 8, 041051 (2018)

Building on earlier work with my students Jakob Scharlau and
Michele Pastena, and with Matteo Lostaglio.

First, recall the previous scenario:
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Allow for additional system C that is involved but doesn’t change.

Branddo et al., The second laws of quantum thermodynamics, PNAS 112, 3275 (2015).
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Single-shot interpretation of the free energy

Own work: allow correlations between catalyst and system.
[1] MM, Phys. Rev. X 8, 041051 (2018).
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Single-shot interpretation of the free energy

Own work: allow correlations between catalyst and system.
[1] MM, Phys. Rev. X 8, 041051 (2018).

Therm?,ll_rliservoir TR — exp(—kBTHR)/Z
Usrc, Hs + Hr + Heo) =0

_ Catalyst

Energy Preserving Process

- 4. | Whenis a transition
¢ ' i / .
@ Pt ) ps — Ps possible?
System s ”'/éystem

(Blockdiagonal states!)

Irp {USRC (.@ oC ®TR) Ug’RC} = ,Oigac.

Theorem [1]: Possible if and only if F(pg) > F(p).
One-shot interpretation of the free energy F.
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MM, Phys. Rev. X 8, 041051 (2018)

Theorem. Let pga,p’, be block-diagonal states. Then, for every € > 0, there
is a thermal operation 7, a state p'y(e) with ||p’y — p'4(¢)|| < € and a finite-
dimensional catalyst o such that

Te(pa ® oc) = pa(e)oc

if and only if F'(pa) > F(p'y).

“Single-shot” interpretation of
F(p) =tr(pH) + kpT tr(plog p).

Notation: wac = p40c means that

/
Trcwac = pa, Trawac = oc.




Single-shot interpretation of the free energy

[1] MM, Phys. Rev. X 8, 041051 (2018).
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Single-shot interpretation of the free energy

[1] MM, Phys. Rev. X 8, 041051 (2018).

ThermTa,II_rIiservoir TR — exp(—kB THR)/Z

Catalyst Catalyst

JF\‘”'"

A
(;éc’Hcf Energy Preserving Process %ch‘\/x [USRC, HS —l_ HR _I_ HC’] p— O

j - When is a transition

4

VN
/ :
pPs — Ps possible?
(Blockdiagonal states!)

e Fluctuation-free work of formation: If A > F(p'y) — F(pa) > 0,
then transition possible while work bit |e)w — |g)w -

o Almost fluct.-free work extraction: If F(pa) — F(py) > A >0,
then transition possible while work bit (for arbitrary 6 > 0)

9)(glw = (1 =0)|e)(elw +01/d.
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Intuition: why does only F' = F; survive?

The “free energies” are related to the Rényi entropies:

1

Ho(p) = s——logtr (p%),  Hi(p) = H(p) = ~tr(plogp).

Among those, only H; is subadditive:
H(pap) < H(pa)+ H(pn)

For all others, there exist states such that
Ho(pap) > Hal(pa) + Ha(ps)-

Therefore, correlations can “increase the a-disorder”
and lead to automatic satisfaction of the a-free energy conditions.
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M. Lostaglio, D. Jennings, and T. Rudolph, Description of quantum coherence in thermodynamic
processes requires constraints beyond free energy, Nat. Comm. 6, 6383 (2015).

Characterizing the possible transitions p +— p
for non-blockdiagonal states is a hard (and open) problem...

P. Cwiklinski, M. Studziriski, M. Horodecki, and J. Oppenheim, Limitations on the Evolution of
Quantum Coherences: Towards Fully Quantum Second Laws of Thermodynamics,

Phys. Rev. Lett. 115, 210403 (2015)
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Thermal operations are time-translation-covariant:

If U(t) =exp(—iHt) eexp(iHt) then T ol(t) =U(t)oT.

H,p] =0 _

incoherent coherent

H,p'] #0

/ . . . . .
Such p would evolve in time, and, in this sense, be like a “clock”.

Impossibility of above process:
Cannot generate timing information
(coherence) “for free” without an
initial timing reference (clock).
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(Weak) broadcasting of coherence?
s, Hs] # 0 o6

covariant
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operation

incoherent coherent coherent coherent
State of clock allowed to change, but must be reusable indefinitely.

[3] M. Lostaglio and M. P. Mtller, Coherence and asymmetry cannot be broadcast, PRL (to appear).

Theorem [3]. Suppose that Cis finite-dimensional.
Then (weak) broadcasting of coherence is impossible.

More generally, (weak) broadcasting of G-asymmetry is impossible,
for every connected Lie group G. (Time translations: G=1R)
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Own work: allow correlations between catalyst and system.
[1] MM, Phys. Rev. X 8, 041051 (2018).

Therm?,ll_rliservoir TR — exp(—kB THR)/Z

: -.HR + Hel =0
No-broadcasting —>
the theorem is not in general true

if the final state contains coherence.

ransition
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Theorem [1]: Possible if and only if F(pg) > F(p).
One-shot interpretation of the free energy F.




Conclusions

¢ [Thermodynamics as a resource theory

e Fundamental irreversibility for work extraction/cost;
“second laws”. Correlations restore unique 2nd law.

¢ Coherence introduces additional constraints;
related to reference frames for timing info (“clocks”).

Own work:

e MM, Correlating thermal machines and the second law at the nanoscale,
Phys. Rev. X 8, 041051 (2018); arXiv:1707.03451.

e M. Lostaglio and MM, Coherence and asymmetry cannot be broadcast,
Phys. Rev. Lett. 123, 020403 (2019); arXiv:1812.08214.

Thank you!




