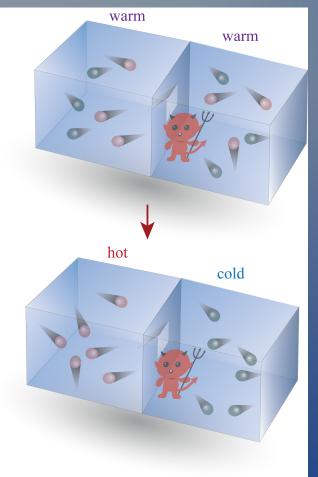


Autonomous Maxwell's demon in a cavity QED system

Patrice A. Camati Institut Néel – CNRS


Quantum Thermodynamics for Young Scientists Bad Honnef, 03/02/2020

Autonomous Maxwell's demon in a cavity QED system

Baldo-Luis Najéra-Santos,¹ Patrice A. Camati,² Valentin Métillon,¹ Michel Brune,¹ Jean-Michel Raimond,¹ Alexia Auffèves,² and Igor Dotsenko^{1, *}
¹Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
²Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France (Dated: January 22, 2020)

Maxwell's Demon

Statistical character of the second law To the left: molecules faster than a threshold To the right: molecules slower than a threshold

Sufficient control would "violate" the second law

Modern standpoint: Information acquisition = Measurement Feedback control = Conditional evolution

J. C. Maxwell, Theory of Heat 4th edition, London: Longmans, Green, and Co. (1875).

Experimental Implementations

On-Chip Maxwell's Demon as an Information-Powered Refrigerator

SEB (2015)

J. V. Koski,¹ A. Kutvonen,² I. M. Khaymovich,^{1,3} T. Ala-Nissila,^{2,4} and J. P. Pekola¹

NMR (2016)

Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System

Patrice A. Camati,¹ John P. S. Peterson,² Tiago B. Batalhão,¹ Kaonan Micadei,¹ Alexandre M. Souza,² Roberto S. Sarthour,² Ivan S. Oliveira,² and Roberto M. Serra^{1,3,*}

Photonic Maxwell's Demon

Optical (2016)

Mihai D. Vidrighin,^{1,2} Oscar Dahlsten,^{2,3,*} Marco Barbieri,^{4,2} M. S. Kim,¹ Vlatko Vedral,^{2,5} and Ian A. Walmsley²

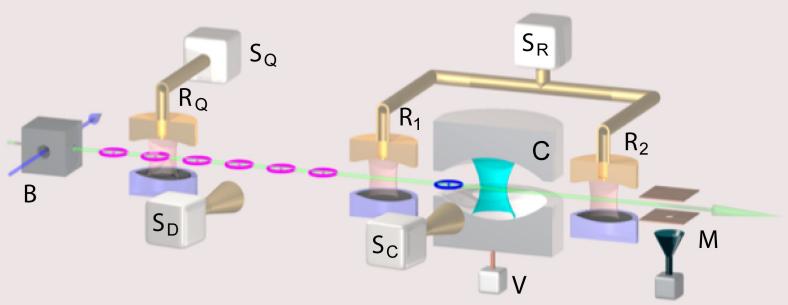
CQED (2017)

Observing a quantum Maxwell demon at work

Nathanaël Cottet^{a,1}, Sébastien Jezouin^{a,1}, Landry Bretheau^a, Philippe Campagne-Ibarcq^a, Quentin Ficheux^a, Janet Anders^b, Alexia Auffèves^c, Rémi Azouit^{d,e}, Pierre Rouchon^{d,e}, and Benjamin Huard^{a,f,2}

CQED (2018)

Information-to-work conversion by Maxwell's demon in a superconducting circuit quantum electrodynamical system


Y. Masuyama ¹, K. Funo², Y. Murashita³, A. Noguchi¹, S. Kono¹, Y. Tabuchi ¹, R. Yamazaki¹, M. Ueda^{3,4} & Y. Nakamura ¹,⁴

CQED (2018)

Information Gain and Loss for a Quantum Maxwell's Demon

M. Naghiloo,¹ J. J. Alonso,² A. Romito,³ E. Lutz,^{2,4} and K. W. Murch^{1,5,*}

Cavity QED setup (2020)

Structure Rydberg atoms

 $\left| e
ight
angle \ \left| g
ight
angle \ \left| f
ight$

Average photon number $\overline{n}_{th} = 0.63 \pm 0.04$ Thermal field temperature $T_C = 2.6 \pm 0.1$ K

Resonance frequency $f_C = 51 \text{ GHz}$

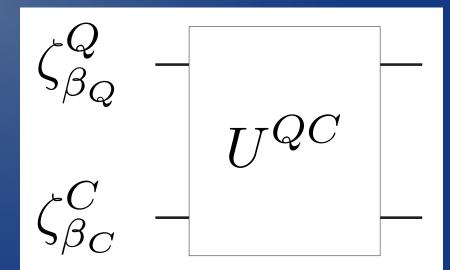
Rabi frequency $\Omega_0 = 2\pi \times 77 \text{ kHz}$ Atomic relaxation time $\Gamma_a^{-1} \approx 30 \text{ ms}$

Total travel time $\tau \approx 100 \ \mu s$

Protocol without demon

The qubit and the cavity exchange energy through the interaction map

Interaction map U^{QC}


$$|1,n\rangle \longrightarrow |0,n+1\rangle$$

$$|0, n+1\rangle \longrightarrow |1, n\rangle$$
$$|0, 0\rangle \longrightarrow |0, 0\rangle$$

Single-energy quanta exchange

$$H^{QC}\left(t\right) = -\frac{\hbar\omega}{2}\sigma_{z} + \hbar\omega a^{\dagger}a + V\left(t\right)$$

The protocol is

Features without demon

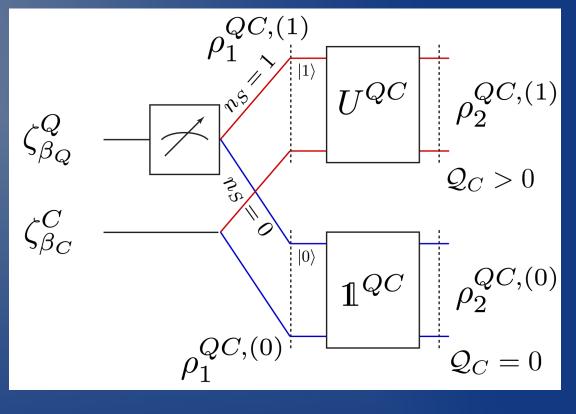
Entropy production (average)

$$\langle \Sigma \rangle = \beta_Q \mathcal{Q}_Q + \beta_C \mathcal{Q}_C$$

$$\Delta\beta = \beta_C - \beta_Q$$

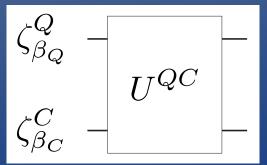
Energy conservation

$$\mathcal{Q}_C = -\mathcal{Q}_Q$$

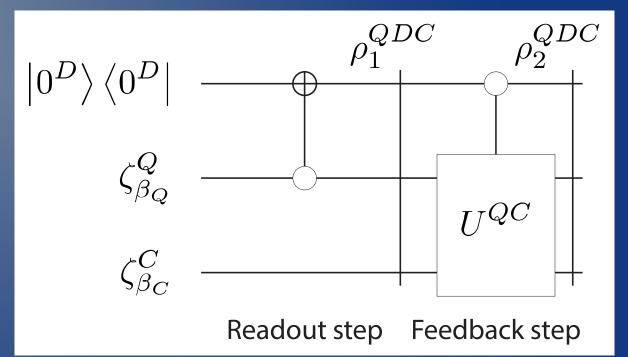

Second law

$$\langle \Sigma \rangle = \Delta \beta \mathcal{Q}_C \ge 0$$

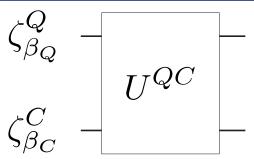
The hotter system always give off heat to the colder one


Exchange of energy controlled by a Maxwell's demon

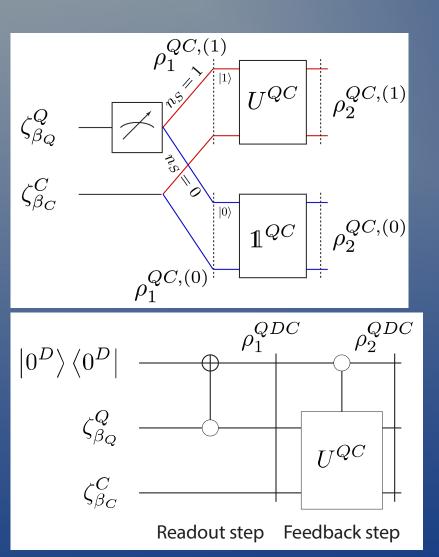
Protocol with the demon


The feedback step is build so that heat from the cavity to the qubit is blocked

No demon


Exchange of energy controlled by a Maxwell's demon

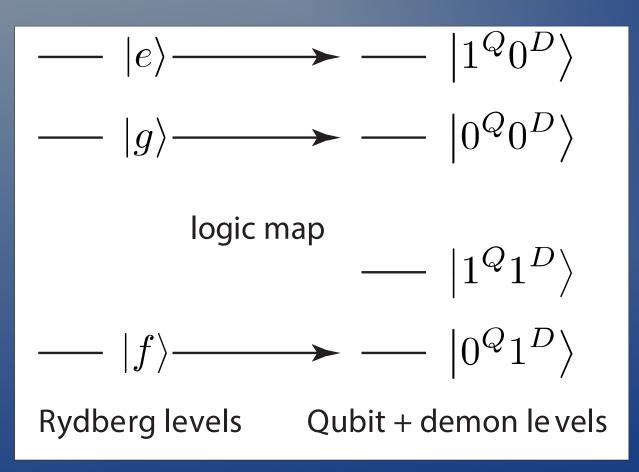
Autonomous implementation



The measurement + feedback are performed dynamically (autonomous performance)

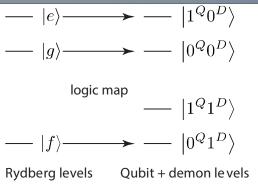
No demon

Relation between them

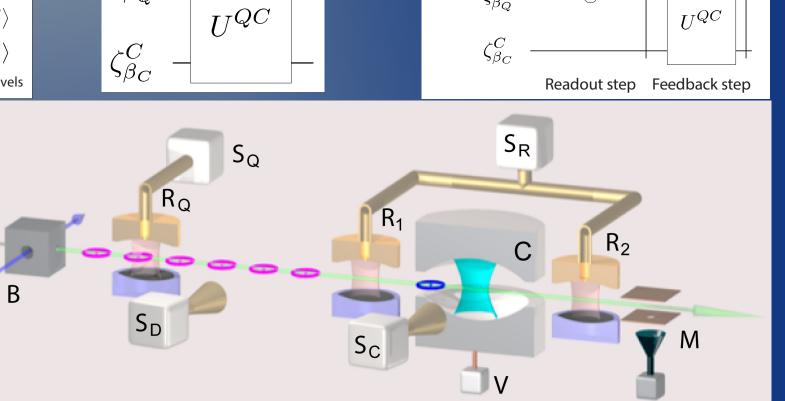


p(k) is the probability of measuring the outcome k

$$\rho_{1}^{QC} = \sum_{k} p\left(k\right) \rho_{1}^{QC,\left(k\right)}$$


$$\rho_{2}^{QC} = \sum_{k} p\left(k\right) \rho_{2}^{QC,\left(k\right)}$$

The logic map



The Rydberg atom energy levels are related to the qubit + demon levels through the logic map

Setup (revisited)

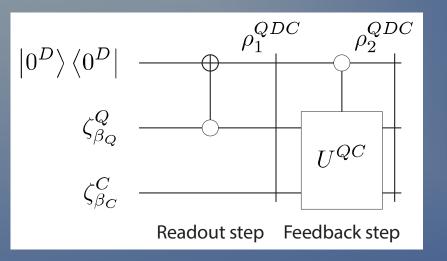
In light of the logic map both circuits can be implemented by turning the source SD on and off

 $|0^D\rangle\langle 0^D$

 $\zeta^Q_{\beta_Q}$

Demon on-off

 $\zeta^Q_{\beta_Q}$

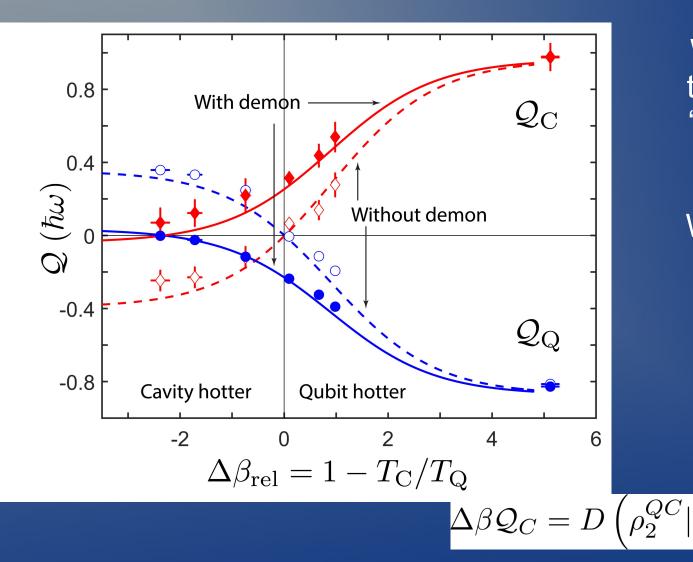

(Controlled) gate

 ρ_1^{QDC}

 ρ_2^{QDC}

 U^{QC}

Thermodynamic Relation

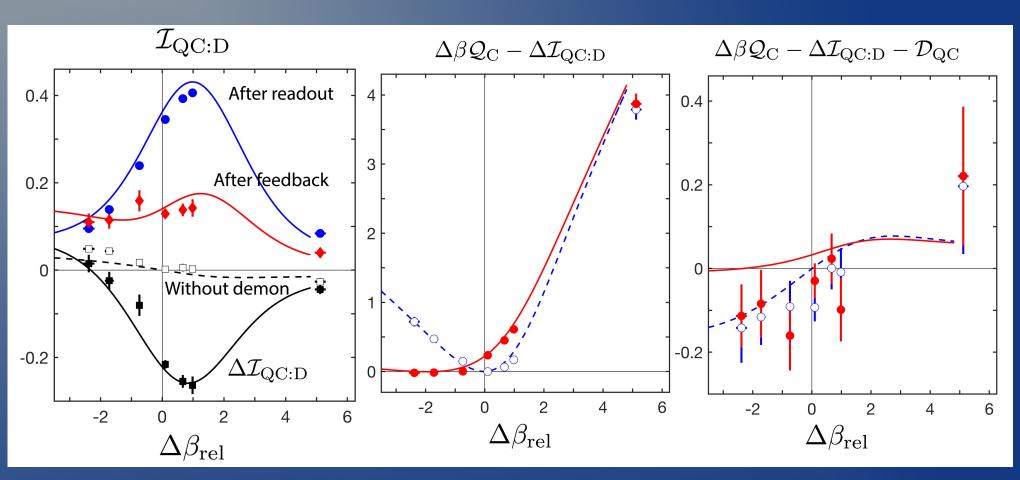

From the conservation of entropy in the global system we can show that

$$\Delta \beta \mathcal{Q}_{C} = D\left(\rho_{2}^{QC} || \zeta_{\beta_{Q}}^{Q} \otimes \zeta_{\beta_{C}}^{C}\right) + \Delta \mathcal{I}^{QC:D}$$

Relative entropy

Mutual information change during the feedback step

Heat transference


Without the demon, the heat flows in the "expected" direction

With the demon, the heat flows in the "inverse" direction

 \otimes

 $+\Delta \mathcal{I}^{QC:D}$

Entropic quantities

Generalized second law Entropy conservation

K. Micadei, et al. Nat. Commn. 10, 2456 (2019)

Wrapping up

- By employing a logic map we experimentally implemented an autonomous Maxwell's demon in a cavity QED setup.
- From the fact that our tripartite system (qubit + demon + cavity) is closed we obtained a thermodynamic relation between the qubit-cavity heat exchanged and the mutual information between the demon and the qubit-cavity system.
- The presence of the demon allows the inversion of heat flow at the expense of consuming the correlations created by the demon during the readout.

Cited References

- J. V. Koski, A. Kutvonen, I. M. Khaymovich, T. Ala-Nissila, and J. P. Pekola, On-Chip Maxwell's Demon as an Information-Powered Refrigerator, PRL **115**, 260602 (2015).
- Mihai D. Vidrighin, Oscar Dahlsten, Marco Barbieri, M. S. Kim, Vlatko Vedral, and Ian A. Walmsley, Photonic Maxwell's Demon, PRL **116**, 050401 (2016).
- P. A. Camati, J. P. S. Peterson, T. B. Batalhão, K. Micadei, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental Rectification of Entropy Production by Maxwell's Demon in a Quantum System, PRL 117, 240502 (2016).
- N. Cottet, S. Jezouin, L. Bretheau, P. Campagne-Ibarcq, Q. Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and B. Huard, Observing a quantum Maxwell demon at work, PNAS **114**, 7561 (2017).
- Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono, Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura, Information-to-work conversion by Maxwell's demon in a superconducting circuit quantum electrodynamical system, Nat. Comm. 9, 1291 (2018).
- M. Naghiloo, J. J. Alonso, A. Romito, E. Lutz, and K. W. Murch, Information Gain and Loss for a Quantum Maxwell's Demon, PRL 121, 030604 (2018)
- K. Micadei, J. P. S. Peterson, A. M. Souza, R. S. Sarthour, I. S. Oliveira, G. T. Landi, T. B. Batalhão, R. M. Serra, and E. Lutz, Reversing the direction of heat flow using quantum correlations, Nat. Comm. 10, 2456 (2019).
- B.-L. Najéra-Santos, P. A. Camati, V. Métillon, M. Brune, J.-M. Raimond, A. Auffèves, and I. Dotsenko, Autonomous Maxwell's demon in a cavity QED system, arXiv:2001.07445 (2020).

Thank you!