PRL 123, 250601 (2019)

Asymptotic reversibility of thermal operations for interacting quantum spin systems

Philippe Faist

Freie Universität Berlin, Germany

with: Takahiro Sagawa, Kohtaro Kato, Keiji Matsumoto, Hiroshi Nagaoka, & Fernando GSL Brandão

Caltech $\left[\left(\begin{array}{c} \begin{array}{c} \\ \end{array} \right) \right] \right]$

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

thermodynamic equilibrium

steady state, no memory of initial conditions

thermodynamic equilibrium processes

reversible

steady state, no memory of initial conditions → thermodynamic potential

thermodynamic equilibrium

reversible processes

macroscopic quantities, no fluctuations

steady state, no memory of initial conditions → thermodynamic potential

thermodynamic equilibrium reversible processes

macroscopic quantities, no fluctuations

steady state, no memory of initial conditions

→ thermodynamic potential

thermodynamic equilibrium reversible processes

macroscopic quantities, no fluctuations

steady state, no memory of initial conditions

→ thermodynamic potential

Simplified des resource theory /sica ergodicity a system, no need to know microscopic details

reversible

processes

thermodynamic equilibrium

steady state, no memory of initial conditions → thermodynamic potential

macroscopic quantities, no fluctuations

Simplified des resource theory /sica ergodicity a system, no need to know microscopic details

Quantum ergodicity

 All translation-invariant observables must have vanishing fluctuations

Ruelle 1999; Bjelaković et al. CMP 2004

Quantum ergodicity

 All translation-invariant observables must have vanishing fluctuations

 ρ is ergodic if for all a_0 ,

$$\operatorname{Var}_{\rho}\left(\frac{1}{n}\sum_{i\in\Lambda_{n}}a_{i}\right)\to0$$

$$\overset{}{\iota}_{a_{0}}\operatorname{shifted}_{by i}$$

Ruelle 1999; Bjelaković et al. CMP 2004

Quantum ergodicity

 All translation-invariant observables must have vanishing fluctuations

 ρ is ergodic if for all a_0 ,

$$\operatorname{Var}_{\rho}\left(\frac{1}{n}\sum_{i\in\Lambda_{n}}a_{i}\right)\to0$$

$$\overset{}{\iota}_{a_{0}}\operatorname{shifted}_{bv\,i}$$

equivalently: \(\rho\) is ergodic if it is extremal in the set of translation-invariant states

Ruelle 1999; Bjelaković et al. CMP 2004

Resource theory of thermal operations

Allowed energyconserving unitaries

Allowed to discard any system

Brandão+ PRL 2013; Horodecki & Oppenheim Nat Com 2013; Ng+ PNAS 2015; Chitambar & Gour RMP 2019; ...

Resource theory of thermal operations

Allowed ancillas in their thermal state

Allowed energyconserving unitaries

Account for work using a battery

 $\begin{array}{l} \rho \otimes |E\rangle \langle E| \\ \to \rho' \otimes |E'\rangle \langle E'| \end{array}$

2

Allowed to discard any system

"consumes E - E' work"

Brandão+ PRL 2013; Horodecki & Oppenheim Nat Com 2013; Ng+ PNAS 2015; Chitambar & Gour RMP 2019; ...

Work distillation & state formation

for semiclassical states (block-diagonal in energy)

Åberg, N Comm 2013; Horodecki & Oppenheim, N Comm 2013

$$\beta W_{\text{dist.}} = S_{\min}^{\epsilon}(\rho \| \gamma)$$
$$= \max_{\tilde{\rho} \approx \rho} \left[-\log \operatorname{tr} \left(\Pi^{\tilde{\rho}} \gamma \right) \right]$$

Åberg, N Comm 2013; Horodecki & Oppenheim, N Comm 2013

 $W_{\text{dist.}}$ γ $\beta W_{\text{dist.}}$ ρ ρ γ $\beta W_{\text{form.}}$

$$W_{\text{dist.}} = S_{\min}^{\epsilon}(\rho \| \gamma)$$
$$= \max_{\tilde{\rho} \approx \rho} \left[-\log \operatorname{tr}(\Pi^{\tilde{\rho}} \gamma) \right]$$

$$V_{\text{form.}} = S_{\max}^{\epsilon}(\rho \| \gamma)$$
$$= \min_{\tilde{\rho} \approx \rho} \log \| \gamma^{-1/2} \, \tilde{\rho} \, \gamma^{-1/2} \|$$

Åberg, N Comm 2013; Horodecki & Oppenheim, N Comm 2013

 $W_{\rm dist.}$ $\beta W_{\text{dist.}} = S_{\min}^{\epsilon}(\rho \parallel \gamma)$ $= \max_{\tilde{\rho} \approx \rho} \left[-\log \operatorname{tr} \left(\Pi^{\tilde{\rho}} \gamma \right) \right]$ $\beta W_{\text{form.}} = S_{\text{max}}^{\epsilon}(\rho \parallel \gamma)$ $= \min_{\tilde{\rho} \approx \rho} \log \left\| \gamma^{-1/2} \, \tilde{\rho} \, \gamma^{-1/2} \right\|$ Åberg, N Comm 2013; reversible if $S_{\min} = S_{\max}$ Horodecki & Oppenheim, N Comm 2013

 $\beta W_{\text{dist.}} = S_{\min}^{\epsilon} (\rho \parallel \gamma)$ $= \max_{\tilde{\rho} \approx \rho} \left[-\log \operatorname{tr} \left(\Pi^{\tilde{\rho}} \gamma \right) \right]$ $\rho \bullet \gamma$ $\beta W_{\text{form.}} = S_{\max}^{\epsilon} (\rho \parallel \gamma)$ $= \min_{\tilde{\rho} \approx \rho} \log \left\| \gamma^{-1/2} \tilde{\rho} \gamma^{-1/2} \right\|$ Åberg, N Comm 20

• reversible if $S_{\min} = S_{\max}$

Åberg, N Comm 2013; Horodecki & Oppenheim, N Comm 2013

does not apply to fully quantum states

- i.i.d. states
- statistical ensembles

other, perhaps more realistic settings?

Main Result: ergodicity implies reversibility

ρ, ρ' ergodic local Hamiltonian

 $\frac{1}{n} \operatorname{Work}(\rho \to \rho')$ $\xrightarrow{n \to \infty} \beta^{-1} [s(\rho') - s(\rho)]$

emergent thermodynamic potential

$$s(\rho) = \lim_{n \to \infty} \frac{1}{n} S(\rho_n \parallel e^{-\beta H_n})$$

*Terms and conditions apply.

• #1: Criterion for reversibility in terms of minand max-relative entropies

$$S_{\min}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ \end{cases} \approx S \Rightarrow \approx \beta^{-1}S \qquad \gamma = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})} \\ \rho \circ \qquad \approx \beta^{-1}S$$

• #1: Criterion for reversibility in terms of minand max-relative entropies

$$S_{\min}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ \end{cases} \approx S \Rightarrow \approx \beta^{-1}S \qquad \gamma = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})} \\ \rho \circ \qquad \approx \beta^{-1}S$$

 #2: Criterion satisfied for ergodic states & local Hamiltonians new Stein's lemma for ergodic states & local Gibbs states

$$\frac{1}{n} S_{\min}^{\epsilon}(\rho_n \| e^{-\beta H_n}) \\ \frac{1}{n} S_{\max}^{\epsilon}(\rho_n \| e^{-\beta H_n}) \\ \left[S_{\dots}(\rho \| \gamma) = S_{\dots}(\rho \| e^{-\beta H}) + \log \operatorname{tr}(e^{-\beta H}) \right]$$

• #2
$$\frac{1}{n} S_{\min}^{\epsilon}(\rho_n \| e^{-\beta H_n})$$

 $\frac{1}{n} S_{\max}^{\epsilon}(\rho_n \| e^{-\beta H_n})$ $\left. \right\} \xrightarrow{n \to \infty} s(\rho) = \lim \frac{1}{n} S(\rho_n \| e^{-\beta H_n})$

Given any two ergodic states ρ , ρ'

 $\left[S_{...}(\rho \| \gamma) = S_{...}(\rho \| e^{-\beta H}) + \log \operatorname{tr}(e^{-\beta H}) \right]$

• #2
$$\frac{1}{n} S_{\min}^{\epsilon}(\rho_n \| e^{-\beta H_n})$$

 $\frac{1}{n} S_{\max}^{\epsilon}(\rho_n \| e^{-\beta H_n})$ $\left. \right\} \xrightarrow{n \to \infty} s(\rho) = \lim \frac{1}{n} S(\rho_n \| e^{-\beta H_n})$

Bad Honnef, Feb. 2020

#2

Given any two ergodic states ρ , ρ'

 $\left[S_{\dots}(\rho \parallel \gamma) = S_{\dots}(\rho \parallel e^{-\beta H}) + \log \operatorname{tr}(e^{-\beta H}) \right]$

min and max relative entropy collapse to a single value $s(\rho)$, $s(\rho')$

8

• #1
$$S_{\min}^{\epsilon}(\rho \parallel \gamma)$$

 $S_{\max}^{\epsilon}(\rho \parallel \gamma)$
 $S_{\max}^{\epsilon}(\rho \parallel \gamma)$
 $\approx S \Rightarrow \qquad \approx \beta^{-1}S$
 $\rho = \frac{e^{-\beta H}}{tr(e^{-\beta H})}$
 $reversibly to/from ρ
 $= \frac{1}{n}S_{\max}^{\epsilon}(\rho_n \parallel e^{-\beta H_n})$
 $\frac{1}{n}S_{\max}^{\epsilon}(\rho_n \parallel e^{-\beta H_n})$
 $\frac{1}{n}S_{\max}^{\epsilon}(\rho_n \parallel e^{-\beta H_n})$
 $\frac{1}{n}S_{\max}^{\epsilon}(\rho_n \parallel e^{-\beta H_n})$
 $\frac{1}{n}S_{\max}(\rho_n \parallel e^{-\beta H_n})$
 $reversibly to/from ρ
 $\frac{1}{n}S_{\max}(\rho_n \parallel e^{-\beta H_n})$
 $\frac{1}{n}S_{\max}(\rho_n \parallel e^{-\beta H_n})$
 $reversible s(\rho) = \lim_{n \to \infty} \frac{1}{n}S(\rho_n \parallel e^{-\beta H_n})$
 $reversible s(\rho), s(\rho')$
 $[S_{\dots}(\rho \parallel \gamma) = S_{\dots}(\rho \parallel e^{-\beta H}) + \log tr(e^{-\beta H})]$$$

Some technical proof ingredients

- Coherence modes of quantum states Korzekwa *et al.*, NJP (2016); Marvian & Spekkens, PRA (2014)
- Small reference frame for creating coherent superpositions of energy levels Bartlett *et al.*, RMP (2007); Brandão *et al.*, PRL (2013); ...
- Typical subspaces for ergodic states & local Gibbs states

Bjelaković & Siegmund-Schultze, CMP (2004)

• Ergodic states are spatially ergodic (w.r.t. translation-invariant observables) and can evolve nontrivially in time

• Ergodic states are spatially ergodic (w.r.t. translation-invariant observables) and can evolve nontrivially in time

e.g.
$$|\psi\rangle = |+\rangle^{\otimes n}$$
 $|+\rangle = [|\uparrow\rangle + |\downarrow\rangle]/\sqrt{2}$
($H = \sum \sigma_z$
i.i.d. \Rightarrow ergodic

• Ergodic states are spatially ergodic (w.r.t. translation-invariant observables) and can evolve nontrivially in time

e.g.
$$|\psi\rangle = |+\rangle^{\otimes n}$$
 $|+\rangle = [|\uparrow\rangle + |\downarrow\rangle]/\sqrt{2}$
($H = \sum \sigma_z$
i.i.d. \Rightarrow ergodic

 $\blacktriangleright |\psi\rangle$ has macroscopic changes in $\langle \sum \sigma_x \rangle$

• Ergodic states are spatially ergodic (w.r.t. translation-invariant observables) and can evolve nontrivially in time

e.g.
$$|\psi\rangle = |+\rangle^{\otimes n}$$
 $|+\rangle = [|\uparrow\rangle + |\downarrow\rangle]/\sqrt{2}$
($H = \sum \sigma_z$
i.i.d. \Rightarrow ergodic

 $\blacktriangleright |\psi\rangle$ has macroscopic changes in $\langle \sum \sigma_x \rangle$

 and yet such states are asymptotically reversibly convertible with thermal operations

Discussion

- New Shannon-McMillan-Breiman theorem for the relative entropy
- New result for thermal operations that applies to states with coherences
- Small reference frame can be a classical field / laser light
- local reduced state of Gibbs instead of truncated Hamiltonian, for high enough T
- The KL divergence is not always the relevant potential (but it is for ergodic states)

Outlook

- What is the largest class of states that obey the reversibility property?
- Relation to entropy accumulation? Dupuis *et al.*, 1607.01796
- Can we incorporate small violations of translation-invariance? or some disorder?
- Any connections to the eigenstate thermalization hypothesis? (Hint: exponential decay of off-diagonal matrix elements)

Thank you for your attention!

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

► Lemma: coherence modes in ρ suppressed as $\langle E | \rho | E' \rangle \sim e^{-\beta |E - E'| + O(\Delta)}$

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

► Lemma: coherence modes in ρ suppressed as $\langle E | \rho | E' \rangle \sim e^{-\beta |E - E'| + O(\Delta)}$

Small reference frame can describe the coherence in ρ

 $\rho_S \leftrightarrow \mathcal{D}_{H_S + H_C}(\rho_S \otimes \eta_C)$

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

► Lemma: coherence modes in ρ suppressed as $\langle E | \rho | E' \rangle \sim e^{-\beta |E - E'| + O(\Delta)}$

Small reference frame can describe the coherence in ρ

 $\rho_S \leftrightarrow \mathcal{D}_{H_S + H_C}(\rho_S \otimes \eta_C)$

Protocols for $\rho \circ \gamma \otimes \rho \circ \gamma \otimes \rho \circ \gamma$

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

► Lemma: coherence modes in p suppressed as $\langle E | \rho | E' \rangle \sim e^{-\beta |E - E'| + O(\Delta)}$

 $\rho_S \leftrightarrow \mathcal{D}_{H_S + H_C}(\rho_S \otimes \eta_C)$

Small reference frame can describe the coherence in ρ

Protocols for $\rho \circ \gamma \otimes \rho \circ \gamma \otimes \rho \circ \gamma$:

- energies multiple of $O(\Delta)$
- dephase in energy spaces
- semiclassical work extraction

Work $\geq \beta^{-1}S - O(\Delta)$

 $\begin{cases} S_{\min}^{\epsilon}(\rho \parallel e^{-\beta H}) \geqslant S - \Delta \\ S_{\max}^{\epsilon}(\rho \parallel e^{-\beta H}) \leqslant S + \Delta \end{cases}$

► Lemma: coherence modes in ρ suppressed as $\langle E | \rho | E' \rangle \sim e^{-\beta |E - E'| + O(\Delta)}$

 $\rho_S \leftrightarrow \mathcal{D}_{H_S + H_C}(\rho_S \otimes \eta_C)$

Small reference frame can describe the coherence in ρ

Protocols for

- energies multiple of $O(\Delta)$
- dephase in energy spaces
- semiclassical work
 extraction

 $\gamma & \rho \circ \gamma :$

- energies multiple of $O(\Delta)$
- create p & reference frame (semiclassical formation)
- shift coherence to ρ

Work $\geq \beta^{-1}S - O(\Delta)$

Work $\leq \beta^{-1}S + O(\Delta)$

• #1: Criterion for reversibility in terms of minand max-relative entropies

$$S_{\min}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ \end{cases} \approx S \Rightarrow \approx \beta^{-1}S \qquad \gamma = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})} \\ \rho \circ \qquad \approx \beta^{-1}S$$

• #2: Criterion satisfied for ergodic states & local Hamiltonians new Stein's lemma for ergodic

states & local Gibbs states

$$\frac{\frac{1}{n}S_{\min}^{\epsilon}(\rho_{n} \| e^{-\beta H_{n}})}{\frac{1}{n}S_{\max}^{\epsilon}(\rho_{n} \| e^{-\beta H_{n}})} \right\} \xrightarrow{n \to \infty} s(\rho) = \lim \frac{1}{n}S(\rho_{n} \| e^{-\beta H_{n}})$$

The hypothesis testing relative entropy

$$S_{\rm h}^{\eta}(\rho \| \sigma) = -\log \min_{\substack{0 \le Q \le 1\\ \operatorname{tr}(Q\rho) \ge \eta}} \operatorname{tr}(Q\sigma)$$

The hypothesis testing relative entropy

$$S_{h}^{\eta}(\rho \| \sigma) = -\log \min_{\substack{0 \leqslant Q \leqslant 1 \\ \operatorname{tr}(Q\rho) \geqslant \eta}} \operatorname{tr}(Q\sigma)$$
$$\sim S_{\min}^{\epsilon}(\rho \| \sigma) \qquad \sim S_{\max}^{\epsilon}(\rho \| \sigma)$$
$$\qquad \qquad \sim S_{\max}^{\epsilon}(\rho \| \sigma)$$

interpolates between S_{\min}^{ϵ} and S_{\max}^{ϵ}

The hypothesis testing relative entropy

interpolates between S_{\min}^{ϵ} and S_{\max}^{ϵ}

Stein's lemma for i.i.d. states

 $\sim S_{\min}^{\epsilon}(\rho \| \sigma)$

 $\otimes n$

'n

The hypothesis testing relative entropy

interpolates between S_{\min}^{ϵ} and S_{\max}^{ϵ}

Stein's lemma for i.i.d. states

also:

- ergodic states & product states
- classically: Shannon-McMillan-Breiman

Bjelaković *et al.* CMP 2004, Cover & Thomas

 $S_{\mathbf{h}}^{\eta}(\rho \| \sigma) = -\log \min_{0 \leqslant Q \leqslant \mathbb{1}} \operatorname{tr}(Q\sigma)$

 $S_{\rm h}^{\eta}(\rho \| \sigma)$

 $S(\rho \parallel \sigma)$

 $\otimes n$

1/n

 $\operatorname{tr}(Q\rho) \geqslant \eta$

 $\sim S_{\max}^{\epsilon}(\rho \,\|\, \sigma)$

 $\otimes n$

1/n

 $\eta \rightarrow 0$

Stein's lemma (i.i.d.) on site i $S_{h}^{\eta}(\rho^{\otimes n} || e^{-H_{n}}) = ?$ $e^{-H_{n}} = \sigma^{\otimes n}$ $H_{n} = \sum_{i=1}^{n} h_{i}$ $h_{i} = h = -\ln(\sigma)$ eigenstates $|x\rangle$

Bjelaković+ quant-ph/0307170

on site i

$$S_{h}^{\eta}(\rho^{\otimes n} || e^{-H_{n}}) = ? \qquad e^{-H_{n}} = \sigma^{\otimes n} \qquad H_{n} = \sum_{h_{i}} h_{i}$$

relative typical projector
$$\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^{n}\rangle \ : \ \frac{1}{n} \langle x^{n} | H_{n} | x^{n} \rangle \in [\langle h \rangle_{\rho} \ \pm \delta \] \right\}$$

eigenstates $|x\rangle$

Bjelaković+ quant-ph/0307170

on site i

$$S_{h}^{\eta}(\rho^{\otimes n} || e^{-H_{n}}) = ? \qquad e^{-H_{n}} = \sigma^{\otimes n} \qquad H_{n} = \sum_{i=1}^{n} h_{i}$$

relative typical projector
$$\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^{n}\rangle : \frac{1}{n} \langle x^{n} | H_{n} | x^{n}\rangle \in [\langle h \rangle_{\rho} \pm \delta] \right\}$$

$$\implies e^{-n(\langle h \rangle_{\rho} + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leq \Pi_{\rho|\sigma}^{n,\delta} \sigma^{\otimes n} \Pi_{\rho|\sigma}^{n,\delta} \leq e^{-n(\langle h \rangle_{\rho} - \delta)} \Pi_{\rho|\sigma}^{n,\delta}$$

$$\operatorname{tr}(\Pi_{\rho|\sigma}^{n,\delta} \rho^{\otimes n}) \to 1 \text{ (large deviations)}$$

Bjelaković+ quant-ph/0307170

on site i

$$S_{h}^{\eta}(\rho^{\otimes n} || e^{-H_{n}}) = ? \qquad e^{-H_{n}} = \sigma^{\otimes n} \qquad H_{n} = \sum_{h_{i}}^{\checkmark} h_{i}$$
relative typical projector
$$\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^{n}\rangle : \frac{1}{n} \langle x^{n} | H_{n} | x^{n}\rangle \in [\langle h \rangle_{\rho} \pm \delta] \right\}$$

$$\implies e^{-n(\langle h \rangle_{\rho} + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leq \Pi_{\rho|\sigma}^{n,\delta} \sigma^{\otimes n} \Pi_{\rho|\sigma}^{n,\delta} \leq e^{-n(\langle h \rangle_{\rho} - \delta)} \Pi_{\rho|\sigma}^{n,\delta}$$
candidate in
$$e^{-S_{h}^{\eta}(\rho^{\otimes n} || \sigma^{\otimes n})} = \min_{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(Q\rho^{\otimes n}) \geq \eta}} \operatorname{tr}(Q\sigma^{\otimes n}) ?$$

Bjelaković+ quant-ph/0307170

on site i

$$\begin{split} S_{h}^{\eta}(\rho^{\otimes n} \parallel e^{-H_{n}}) &= ? \qquad e^{-H_{n}} = \sigma^{\otimes n} \qquad H_{n} = \sum_{h_{i}} h_{i} \\ \text{relative typical projector} \qquad & h_{i} = h = -\ln(\sigma) \\ & \text{eigenstates } |x\rangle \\ \Pi_{\rho|\sigma}^{n,\delta} &= \left\{ |x^{n}\rangle \ : \ \frac{1}{n} \langle x^{n} \mid H_{n} \mid x^{n}\rangle \in [\ \langle h \rangle_{\rho} \ \pm \delta \] \right\} \\ & \rightarrow e^{-n(\ \langle h \rangle_{\rho} \ + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leqslant \Pi_{\rho|\sigma}^{n,\delta} \sigma^{\otimes n} \Pi_{\rho|\sigma}^{n,\delta} \leqslant e^{-n(\ \langle h \rangle_{\rho} \ - \delta)} \Pi_{\rho|\sigma}^{n,\delta} \\ & \text{candidate in} \\ e^{-S_{h}^{n}(\rho^{\otimes n} \parallel \sigma^{\otimes n})} &= \min_{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(Q\rho^{\otimes n}) \geq \eta}} \operatorname{tr}(Q\sigma^{\otimes n}) \ ? \\ & \text{use} \\ Q &= \prod_{\rho|\sigma}^{n,\delta} \prod_{\rho|\sigma}^{n,\delta} \prod_{\rho|\sigma}^{n,\delta} 1 \qquad \leqslant e^{-n(\ \langle h \rangle_{\rho} \ - \delta)} \operatorname{tr}(\Pi_{\rho|\rho}^{n,\delta}) \\ & \text{generation} \\ & \text{Bjelaković+ quant-ph/0307170} \qquad (\text{converse bound via SDP dual}) \end{split}$$

 $S_{h}^{\eta}(\rho_{n} \parallel e^{-H_{n}}) = ? \quad \sigma_{n} = e^{-H_{n}} \quad \begin{array}{l} \rho_{n} \text{ ergodic; } H_{n} \text{ local} \\ \text{with eigenstates } |x^{n}\rangle \end{array}$

relative typical projector

$$\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^n\rangle : \frac{1}{n} \langle x^n | H_n | x^n \rangle \in \left[\left\langle \frac{1}{n} H_n \right\rangle_{\rho} \pm \delta \right] \right\}$$

Bjelaković+ quant-ph/0307170

 $S_{h}^{\eta}(\rho_{n} \parallel e^{-H_{n}}) = ? \quad \sigma_{n} = e^{-H_{n}} \quad \begin{array}{l} \rho_{n} \text{ ergodic; } H_{n} \text{ local} \\ \text{with eigenstates } |x^{n}\rangle \end{array}$

$$\begin{split} \Pi_{\rho|\sigma}^{n,\delta} &= \left\{ |x^n\rangle \ : \ \frac{1}{n} \langle x^n \,|\, H_n \,|\, x^n\rangle \in [\langle \frac{1}{n} H_n \rangle_{\rho} \pm \delta] \right\} \\ \longrightarrow \ e^{-n(\langle \frac{1}{n} H_n \rangle_{\rho} + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leqslant \Pi_{\rho|\sigma}^{n,\delta} \sigma_n \ \Pi_{\rho|\sigma}^{n,\delta} \leqslant e^{-n(\langle \frac{1}{n} H_n \rangle_{\rho} - \delta)} \Pi_{\rho|\sigma}^{n,\delta} \\ & \operatorname{tr} \left(\Pi_{\rho|\sigma}^{n,\delta} \rho_n \right) \to 1 \quad \text{(ergodicity)} \end{split}$$

Bjelaković+ quant-ph/0307170

relative typical projector

 $S_{h}^{\eta}(\rho_{n} \parallel e^{-H_{n}}) = ? \quad \sigma_{n} = e^{-H_{n}} \quad \rho_{n} \operatorname{ergodic}; H_{n} \operatorname{local}$ with eigenstates $|x^{n}\rangle$ relative typical projector $\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^n\rangle : \frac{1}{n} \langle x^n | H_n | x^n \rangle \in \left[\left\langle \frac{1}{n} H_n \right\rangle_{\rho} \pm \delta \right] \right\}$ $\longrightarrow e^{-n(\langle \frac{1}{n}H_n \rangle_{\rho} + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leqslant \Pi_{\rho|\sigma}^{n,\delta} \sigma_n \Pi_{\rho|\sigma}^{n,\delta} \leqslant e^{-n(\langle \frac{1}{n}H_n \rangle_{\rho} - \delta)} \Pi_{\rho|\sigma}^{n,\delta}$ $\operatorname{tr}(\prod_{\substack{\rho \mid \sigma}}^{n,\delta} \rho_n) \to 1$ (ergodicity) candidate in $e^{-S_{\mathbf{h}}^{\eta}(\rho_{\mathbf{n}} \parallel \sigma_{\mathbf{n}})} = \min_{0 \leqslant Q \leqslant \mathbb{1}} \operatorname{tr}(Q \sigma_{\mathbf{n}}) ?$ $\operatorname{tr}(Q \ \boldsymbol{\rho}_{\boldsymbol{n}}) \geq \eta$

Bjelaković+ quant-ph/0307170

 $S_{h}^{\eta}(\rho_{n} \parallel e^{-H_{n}}) = ? \quad \sigma_{n} = e^{-H_{n}} \quad \rho_{n} \operatorname{ergodic}; H_{n} \operatorname{local}$ with eigenstates $|x^{n}\rangle$ relative typical projector $\Pi_{\rho|\sigma}^{n,\delta} = \left\{ |x^n\rangle : \frac{1}{n} \langle x^n | H_n | x^n \rangle \in \left[\left\langle \frac{1}{n} H_n \right\rangle_{\rho} \pm \delta \right] \right\}$ $\longrightarrow e^{-n(\langle \frac{1}{n}H_n \rangle_{\rho} + \delta)} \Pi_{\rho|\sigma}^{n,\delta} \leqslant \Pi_{\rho|\sigma}^{n,\delta} \sigma_n \Pi_{\rho|\sigma}^{n,\delta} \leqslant e^{-n(\langle \frac{1}{n}H_n \rangle_{\rho} - \delta)} \Pi_{\rho|\sigma}^{n,\delta}$ $\operatorname{tr}(\prod_{\substack{\rho \mid \sigma}}^{n,\delta} \rho_n) \to 1$ (ergodicity) candidate in $e^{-S_{h}^{\eta}(\rho_{n} \parallel \sigma_{n})} = \min_{\substack{0 \leq Q \leq 1 \\ \operatorname{tr}(Q \mid \rho_{n}) \geq \eta}} \operatorname{tr}(Q \mid \sigma_{n}) ?$ $\leq e^{-n(\langle \frac{1}{n}H_{n} \rangle_{\rho} - \delta)} \operatorname{tr}(\Pi_{\rho \mid \rho}^{n, \delta})$ $\searrow 1$ use $\leq e^{-n(s_n-2\delta)}$ $Q = \prod_{\substack{\alpha \mid \sigma}}^{n,\delta} \prod_{\substack{\alpha \mid \alpha}}^{n,\delta} \prod_{\substack{\alpha \mid \sigma}}^{n,\delta}$ where $s_n \to \lim \frac{1}{n} S(\rho_n \| \sigma_n)$ (converse bound via SDP dual) Bjelaković+ quant-ph/0307170

• #1: Criterion for reversibility in terms of minand max-relative entropies

$$S_{\min}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ S_{\max}^{\epsilon}(\rho \parallel \gamma) \\ \end{cases} \approx S \Rightarrow \approx \beta^{-1}S \qquad \gamma = \frac{e^{-\beta H}}{\operatorname{tr}(e^{-\beta H})} \\ \rho \circ \qquad \approx \beta^{-1}S$$

• #2: Criterion satisfied for ergodic states & local Hamiltonians new Stein's lemma for ergodic

states & local Gibbs states

$$\frac{\frac{1}{n}S_{\min}^{\epsilon}(\rho_{n} \| e^{-\beta H_{n}})}{\frac{1}{n}S_{\max}^{\epsilon}(\rho_{n} \| e^{-\beta H_{n}})} \right\} \xrightarrow{n \to \infty} s(\rho) = \lim \frac{1}{n}S(\rho_{n} \| e^{-\beta H_{n}})$$

Putting everything together

 $\begin{array}{ll} & \text{Step \#2:} \\ & S_{\min}(\rho_n \parallel e^{-\beta H_n})/n \\ & S_{\max}(\rho_n \parallel e^{-\beta H_n})/n \end{array} \right\} \rightarrow s(\rho) \end{array}$

 ρ, ρ' ergodic local Hamiltonian

$$s(\rho) = \lim_{n \to \infty} \frac{1}{n} S(\rho_n \parallel e^{-\beta H_n})$$

Step #1:

collapse of min- and maxrelative entropies implies reversibility

& $s(\rho)$ is the emergent thermodynamic potential

Finite mixtures of ergodic states

Lemma:

$$S_{\min}^{\epsilon} (\sum p_k \rho^{(k)} \| \sigma) \sim \min_k S_{\min}^{\epsilon} (\rho^{(k)} \| \sigma)$$

$$S_{\max}^{\epsilon} (\sum p_k \rho^{(k)} \| \sigma) \sim \max_k S_{\max}^{\epsilon} (\rho^{(k)} \| \sigma)$$

Finite mixtures of ergodic states

Lemma:

$$S_{\min}^{\epsilon} (\sum p_k \rho^{(k)} \| \sigma) \sim \min_k S_{\min}^{\epsilon} (\rho^{(k)} \| \sigma)$$

$$S_{\max}^{\epsilon} (\sum p_k \rho^{(k)} \| \sigma) \sim \max_k S_{\max}^{\epsilon} (\rho^{(k)} \| \sigma)$$

- ► A finitie mixture of ergodic states ...
 - → ... can be reversibly converted to/from the thermal state if all terms in the mixture have the same potential;
 - → ... otherwise does not have a thermodynamic potential in the resource theory.